Skip to main content
Log in

Rapid oxidation of liquid tin and its alloys at 600 to 800°C

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The behavior of liquid tin and its alloys in oxygen at temperature range 600 to 800°C were investigated. Rapid and nearly linear reaction kinetics were observed for pure tin at temperature higher than 700°C. Marker experiments, which determine the mode of mass transport through the scale, and wetting phenomena between the oxide and melts were studied to delineate the reaction mechanism of oxide growth. Moreover, the rates of oxidation of tin were markedly changed by alloying it with small amount of foreign elements. Significantly increased oxidation rates for binary tin alloys containing Mg, Ba, La or Ca were observed. TEM studies indicated that additional growth stresses were introduced into the SnO2 scales by these additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Newkirk, A. W. Urquhart, H. R. Zwicke and E. Breval, J. Mater. Res. 1(1) (1986) 81–89.

    Google Scholar 

  2. M. S. Newkirk, H. D. Lesher, D. R. White, C. R. Kennedy, A. W. Urquhart and T. D. Claar, Ceram. Eng. Sci. Proc. 8 (1987) 879–885.

    Google Scholar 

  3. M. S. Newkirk and S. F. Dizio, U. S. Patent no. 4,713,360 (1987).

  4. K. Creber, S. D. Poste, M. K. Aghajanian and T. D. Claar, Ceram. Eng. Sci. Proc. 9 (7/8) (1988) 975–982.

    Google Scholar 

  5. D.-W. Yuan, V.-S. Chengn, R.-F. Yan and G. Simkovich, ibid. 15 (4) (1994) 85–94.

    Google Scholar 

  6. D.-W. Yuan, S. G. Song, R.-F. Yan, E. R. Ryba and G. Simkovich, J. Mater. Sci. 34 (6) (1999) 1293–1300.

    Google Scholar 

  7. W. Gruhl and V. Gruhl, Metall. 6 (1952) 177–182.

    Google Scholar 

  8. G. Shimaoka and I. Yamai, J. Chem. Soc. Japan 76 (1955) 965–967.

    Google Scholar 

  9. P. Spinedi, Gazz. Chim. ital. 86 (1956) 579–588.

    Google Scholar 

  10. J. O. Cope, Trans. Faraday Soc. 57 (1961) 493–503.

    Google Scholar 

  11. D. W. Alymore, S. J. Gregg and W. B. Jepson, J. Electrochem. Soc. 106 (1959) 1010–1013.

    Google Scholar 

  12. J. C. Nover and F. D. Richardson, Trans. Inst. Min. Metall. 81 (1972) c63–c68.

    Google Scholar 

  13. C. Wagner, “Atom Movements” (ASM, Cleveland, OH, 1951).

    Google Scholar 

  14. T. Shuey, “Semiconducting Ore Minerals” (Elsevier, New York, 1975).

    Google Scholar 

  15. W. E. Boggs, R. H. Kochik and G. E. Pellissier, J. Electrochem. Soc. 110 (1963) 4–11.

    Google Scholar 

  16. K. Hauffe and C. Gensch, Z. Physik. Chem. 195 (1950) 116–128.

    Google Scholar 

  17. O. Kubaschewski, E. Evans and C. B. Alcock, “Metallurgical Thermochemistry” (Pergamon Press, New York, 1967) pp. 304–363.

    Google Scholar 

  18. V. R. Howes and C. N. Richardson, Corr. Sci. 9 (1969) 385–394.

    Google Scholar 

  19. J. Stringer, ibid. 10 (1970) 513-543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, DW., Yan, RF. & Simkovich, G. Rapid oxidation of liquid tin and its alloys at 600 to 800°C. Journal of Materials Science 34, 2911–2920 (1999). https://doi.org/10.1023/A:1004699705451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004699705451

Keywords

Navigation