Skip to main content
Log in

The Formation of Protective Alumina-Based Scales During High-Temperature Air Oxidation of γ -TiAl Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of Ag additions on the oxidation behavior of γ-TiAl hasbeen studied. The materials investigated containing 47–50 at.% Aland 0–5 at.% Ag were tested with respect to oxidation resistanceduring exposure in air at 800°C. The exposures up to around 1600 hrshowed that suitable Ag additions can promote formation of long-term,protective, alumina scales on γ-TiAl alloys. Extensive analysesof the oxidation products using optical metallography SEM, XRD, EPMA,and SIMS revealed that Ag stabilizes the Z-phase (Ti5Al3O2) in thesubscale-depletion layer thereby preventing formation of α2-Ti3Alas well as Ti-rich nitrides, which are responsible for the destructionof alumina scales in common γ -TiAl alloys. The best results wereobtained for the alloy Ti–50Al–2Ag; even during exposures aslong as around 1600 hr, this alloy still appeared to form a stable aluminalayer. It was found that high Ag additions of 5% were detrimental afterlonger exposure times due to extensive Ag precipitationat the interface between the alloy and depletion layer, resulting inlocalized formation of rapidly growing, mixed-oxide scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Tetsui, in Structural Intermetallics '97, M. N. Nathal et al., eds., The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, September 21-25, Seven Springs Mountain Resort, Champion, Pensylvania (TMS, 1997), p. 485

    Google Scholar 

  2. C. M. Austin, T. J. Kelly, K. G. McAllister, and J. C. Chesnutt, in Structural Intermetallics '97, M. N. Nathal et al., eds., The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, September 21-25, Seven Springs Mountain Resort, Champion, Pensylvania (TMS, 1997), p. 413.

    Google Scholar 

  3. G. H. Meier, in Oxidation of Intermetallics, M. J. Grabke and M. Schütze, eds. (Wiley, New York, 1997), p. 15.

    Google Scholar 

  4. A. Rahmel, W. J. Quadakkers, and M. Schütze, Mater. Corros. 46, 271 (1995).

    Google Scholar 

  5. N. S. Coudhury, H. C. Graham, and J. W. Hinze, in Properties of High Temperature Alloys, Z. A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Princeton, N.J., 1976), p. 668.

    Google Scholar 

  6. Y. Shida and D. Anada, Corros. Sci. 35, 945 (1993).

    Google Scholar 

  7. G. H. Meier, F. S. Pettit, and S. Hu, Proc. J. Phys. IV 3, 395 (1993).

    Google Scholar 

  8. H. Nickel, N. Zheng, A. Elschner, and W. J. Quadakkers, Microchim. Acta 119, 23 (1995).

    Google Scholar 

  9. N. Zheng, W. J. Quadakkers, F. Schubert, and H. Nickel, Rep. Forschungszentrum Jülich, ISSN 0944-2952, Jül-3105, Jülich, FRG, 1995.

  10. N. Zheng, W. Fischer, V. Shemet, and W. J. Quadakkers, Scripta Metall. Mater. 33, 47 (1995).

    Google Scholar 

  11. V. Shemet, H. Hoven, and W. J. Quadakkers, Intermetallics 5, 311 (1997).

    Google Scholar 

  12. V. Shemet, P. Karduck, H. Hoven, B. Grushko, W. Fischer, and W. J. Quadakkers, Intermetallics 5, 271 (1997).

    Google Scholar 

  13. V. Shemet, W. J. Quadakkers, H. Hoven, and L. Singheiser, Proc. 6th Liège Conf. Mat. Adv. Power Eng., 5-7 Oct. 1998, Liège, Belgium, J. Lecomte-Beckers, F. Schubert, and P. J. Ennis, eds., Forschungstentrum Jülich, Energy Technology Series, Vol. 5, part III, ISBN 3-89336-228-2, p. 1299.

  14. J. H. Westbrook and E. A. Aitken, eds., in Intermetallic Compounds (Wiley, New York, 1967), p. 663.

    Google Scholar 

  15. J. B. McAndrew and H. D. Kessler, Trans. AIME 206, 1348 (1956).

    Google Scholar 

  16. W. J. Quadakkers and H. Viefhaus, Proc. EFC Publications, 14, Guidelines for Methods of Testing and Research in High Temperature Corrosion, Frankfurt, FRG, 20-21 Jan. (The Institute of Materials, London, UK, 1995), p. 189.

    Google Scholar 

  17. M. W. Brumm and H. J. Grabke, Corros. Sci. 33, 1677 (1992).

    Google Scholar 

  18. H. J. Grabke, Mater. Sci. Forum, 251-254, 149 (1997).

    Google Scholar 

  19. U. Figge, A. Elschner, N. Zheng, H. Schuster, and W. J. Quadakkers, Fresenius J. Anal. Chem. 346, 75 (1993).

    Google Scholar 

  20. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 477 (1995).

    Google Scholar 

  21. A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53 (1991).

    Google Scholar 

  22. K. L. Luthra, Oxid. Met. 36, 475 (1991).

    Google Scholar 

  23. S. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  24. A. Gil, H. Hoven, E. Wallura, and W. J. Quadakkers, Corros. Sci. 34, 6154 (1993).

    Google Scholar 

  25. X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. van Loo, Acta Metall. Mater. 40, 3149 (1992).

    Google Scholar 

  26. P. Kofstad, High Temperature Corrosion (Elsevier, New York, 1988).

    Google Scholar 

  27. E. H. Copland, B. Gleeson, and D. Y. Young, Acta. Mater. 47, 2937 (1999).

    Google Scholar 

  28. Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and R. Rühle, Scripta Mater. 34, 707 (1996).

    Google Scholar 

  29. C. Lang, and M. Schütze, Proc. EFC Workshop Oxidation of Intermetallics, 18-19 Jan. Frankfurt, Germany, H. J. Grabke and M. Schütze, eds. (Wiley, New York, 1996), p. 245.

    Google Scholar 

  30. W. Dowling and W. Donlon, Scripta Metall. Mater. 27, 1663 (1992).

    Google Scholar 

  31. R. W. Beye and R. Gronsky, Acta Metall. Mater. 42, 1373 (1994).

    Google Scholar 

  32. W. J. Quadakkers, P. Schaaf, N. Zheng, A. Gil, and E. Wallura, Mater. Corros. 48, 28 (1997).

    Google Scholar 

  33. V. Shemet, M. Yurechko, A. K. Tyagi, W. J. Quadakkers, and L. Singheiser, Proc. 2nd Intern. Symp. on Gamma Titanium Aluminides, 28 February-4 March, San Diego, Y. Kim, D. Dimiduk, and M. Loretto, eds. (The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1999), p. 783

    Google Scholar 

  34. C. Lang and M. Schütze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  35. J. M. Rakowski, F. Pettit, G. Meier, F. Dettenwanger, F. Schumann, and M. Rühle, Scripta Metall. Mater. 33, 997 (1995).

    Google Scholar 

  36. G. Petzow and G. Effenberg, Ternary Alloys (VCH Verlagsgesellschaft, Weinheim, 1993), p. 420

    Google Scholar 

  37. N. S. Jacobson, M. P. Brady and G. M. Mehrotra, Oxid. Met. 52, 537 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shemet, V., Tyagi, A.K., Becker, J.S. et al. The Formation of Protective Alumina-Based Scales During High-Temperature Air Oxidation of γ -TiAl Alloys. Oxidation of Metals 54, 211–235 (2000). https://doi.org/10.1023/A:1004694111032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004694111032

Navigation