Skip to main content
Log in

Thermal Conductivity in Glasses Below 1K: New Technique and Results

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using the capacitance of a glass sample as its own thermometer, we have measured the thermal conductivity of two glasses below 700mK. This technique avoids any thermal boundary resistance between the thermometer and the sample. In addition, since the loss tangent goes to zero as the temperature is lowered, the amount of heat dissipated in a capacitive measurement is very small at low temperatures. We were able to measure the thermal conductivity at temperatures which were previously experimentally inaccessible and found that the thermal conductivity, κ, scales as T 1.86 down to 10mK, in agreement with the two-level system model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Zeller and R. Pohl, Phys. Rev. B 4, 2029 (1971).

    Google Scholar 

  2. P. Anderson, B. Halperin, and C. Varma, Phil. Mag. 25, 1 (1972).

    Google Scholar 

  3. W. Phillips, J. Low Temp. Phys. 7, 351 (1972).

    Google Scholar 

  4. J. C. Lasjaunias, R. Maynard, and M. Vandorpe, J. Phys. 39, 973 (1978).

    Google Scholar 

  5. S. Rogge, D. Natelson, B. Tigner, and D. D. Osheroff, Phys. Rev. B 55, 11256 (1997).

    Google Scholar 

  6. R. van Rooijen, A. Marchenkov, H. Akimoto, R. Jochemsen, and G. Frossati, J. Low Temp. Phys. 110, 269 (1998).

    Google Scholar 

  7. C. Yu and A. Leggett, Comments Cond. Mat. Phys. 14, 231 (1988).

    Google Scholar 

  8. S. Rogge, D. Natelson, and D. Osheroff, Phys. Rev. Lett. 76, 3136 (1996).

    Google Scholar 

  9. C. Enss and S. Hunklinger, Phys. Rev. Lett. 79, 2831 (1997).

    Google Scholar 

  10. D. Natelson, D. Rosenberg, and D. D. Osheroff, Phys. Rev. Lett. 80, 4689 (1998).

    Google Scholar 

  11. Corning No. 1 microscope cover, part No. 2935-224. Corning Labware and Equipment, Corning, NY 14831.

  12. P. J. Anthony and A. C. Anderson, Phys. Rev. B 20, 763 (1979).

    Google Scholar 

  13. S. Rogge, D. Natelson, and D. D. Osheroff, J. Low Temp. Phys. 106, 717 (1997).

    Google Scholar 

  14. S. Rogge, D. Natelson, and D. D. Osheroff, Rev. Sci. Instr. 68 1831 (1997).

    Google Scholar 

  15. T. Klitsner and R. O. Pohl, Phys. Rev. B 36, 6551 (1987).

    Google Scholar 

  16. Jürgen T. Stockburger, Milean Grifoni, and Maura Sassetti, Phys. Rev. B 51 2835 (1995).

    Google Scholar 

  17. H. Nishiyama, H. Akimoto, Y. Okuda, and H. Ishimoto, J. Low Temp. Phys. 89, 727 (1992).

    Google Scholar 

  18. M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).

    Google Scholar 

  19. S. Rogge, Ph.D. thesis, Stanford University (1996).

  20. W. Holmes, private communication (1998).

  21. E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Google Scholar 

  22. P. Strehlow, M. Wohlfart, A. G. M. Jansen, R. Haueisen, G. Weiss, C. Enss, and S. Hunklinger, Phys. Rev. Lett. 84, 1938 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, D., Natelson, D. & Osheroff, D.D. Thermal Conductivity in Glasses Below 1K: New Technique and Results. Journal of Low Temperature Physics 120, 259–268 (2000). https://doi.org/10.1023/A:1004689828780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004689828780

Keywords

Navigation