Skip to main content
Log in

Oxidation behaviour of alumina–silicon carbide nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxidation studies were conducted on Al2O2–SiC nanocomposites at 1400 °C. The composites were prepared by hot-pressing mixtures of commercial alumina and ultrafine SiC powders, in amounts of 5, 15 and 30 vol %. Linear kinetics were detected for the oxidation of composites containing 5 vol % SiC. Two stages were observed in composites containing 15 vol % SiC: the first linear and the second presumably parabolic. A parabolic behaviour was observed in the sample containing 30 vol % SiC. The oxidation rates were several orders of magnitude higher than those of monolithic SiC and the observed data were not consistent with the expected increase in weight associated with the oxidation reaction of SiC to SiO2; in fact the most surprising feature is that the sample containing 30 vol % SiC showed a better oxidation resistance than samples containing 5 and 15 vol % SiC. The reaction products were alumina and mullite in samples with 5 and 15 vol % SiC, while mullite and silica were found on the oxidized surface of samples containing 30 vol % SiC. Explanations are given of the influence of the oxidizable phase amount, the presence of impurities, reaction product structure and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sternitzke, J. Eur. Ceram Soc. 17 (1997) 1061.

    Google Scholar 

  2. K. Niihara, J. Ceram. Soc. Jpn (Int. Ed.) 99 (1991) 945.

    Google Scholar 

  3. T. Ohji, T. Hirano, N. Nakahira and K. Niihara, J. Am. Ceram. Soc. 79 (1996) 33.

    Google Scholar 

  4. L. Timms, B. Le razer, D. H. Pearce, A. Jickells and C. B. Ponton, in “Fourth Euro Ceramics”, Vol 4, edited byA. Bellosi (Faenza Editrice 1995) Faenza, pp. 37–44.

  5. L. C. Stearns, J. Zhao and M. P. Harmer, J. Eur. Ceram. Soc. 10 (1992) 437.

    Google Scholar 

  6. J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan, G. A. Miller and R. E. Cook, J. Am. Ceram. Soc. 76 (1993) 503.

    Google Scholar 

  7. H. Wohlfromm, in Ceramic Transaction Vol. 51, “Ceramic Processing Science and Technology”, edited byH. Hausner, G. L. Messing, S. Horano (The American Ceramic Society 1995) Westerville, Ohio, pp. 658–63.

    Google Scholar 

  8. C. E. Borsa and R. J. Brook, ibid., pp. 653–58.

  9. M. Alsan, C. Dorr, R. Nass and H. Schmidt, ibid., pp. 665–9.

  10. A. M. Thompson J. Fang, H. M. Chan and M. P. Harmer, ibid., pp. 671–9.

  11. A. Piciacchio, S.-H. Lee and G. Messing, J. Am. Ceram. Soc. 77 (1994) 2157.

    Google Scholar 

  12. Y. Xu, A. Zangvil and A. Kerber, J. Eur. Ceram. Soc. 17 (1997) 921.

    Google Scholar 

  13. Y.-F. Zhang, Z.-Y. Deng, J.-L. Shi, Y.-Q. Mao and J.-K. Guo, J. Mater. Sci. Lett. 15 (1996) 1927.

    Google Scholar 

  14. C. C. Anya and S. G. Roberts, J. Eur. Ceram. Soc. 17 (1997) 565.

    Google Scholar 

  15. C. E. Borsa, N. M. R. Jones, R. J. Brook and R. I. Todd, ibid. 17 (1997) 865.

    Google Scholar 

  16. D. O'Sullivan, M. Poorteman, B. Thierry, A. Leriche, P. Descamps and F. Cambier, Silica Industriels 11–12 (1996) 235.

    Google Scholar 

  17. Y. Sakka, D. D. Bildinger and I. A. Aksay, J. Am. Ceram. Soc. 78 (1995) 479.

    Google Scholar 

  18. I. A. Chou, H. M. Chan and M. P. Harmer, ibid. 79 (1996) 2403.

    Google Scholar 

  19. Z.-Y Deng, Y.-F. Zhang, J.-L. Shi and J.-K. Guo, J. Eur. Ceram. Soc. 16 (1996) 1337.

    Google Scholar 

  20. D. Sciti, D. Dalle Fabbriche and A. Bellosi, in “Key Engineering Materials Vols 132–136”, Euro Ceramics V, Part 3, J. Baxter, L. Cot, R. Fordham, V. Gabis, Y. Hellot, M. Lefebvre, H. Ledoussal, A. Le Sech, R. Naslain, A. Sevagen (Eds) (1997) Trans Tech. Publications, Vetikov-Zue Rich, Switzerland, pp. 2001–4.

    Google Scholar 

  21. R. E. Tressler, in “Corrosion of Advanced Ceramics”, edited byG. Nickel, NATO ASI Series, (Kluwer Academic 1994) pp. 3–22.

  22. M. P. Borom, M. K. Brun and L. E. Szala, Ceram. Eng. Sci. Proc. 8, The American Ceramic Society, Westerville, Ohio (1987) 654.

    Google Scholar 

  23. K. Luthra, ibid. 8 (1987) 649.

    Google Scholar 

  24. R. A. Marra and D. J. Bray, ibid. 7 (1986) 945.

    Google Scholar 

  25. K. L. Luthra and H. D. Park, J. Am. Ceram. Soc. 73 (1990) 1014.

    Google Scholar 

  26. T. Kennedy, J. Brown, J. Doyle and S. Hamphire, in “Key Engineering Materials”. Vol. 113, “Corrosion of Advanced Ceramics”, R. J. Fordham, D. J. Baxter, T. Graziani (Eds.) (Trans Tech, Switzerland 1996) pp. 65–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciti, D., Bellosi, A. Oxidation behaviour of alumina–silicon carbide nanocomposites. Journal of Materials Science 33, 3823–3830 (1998). https://doi.org/10.1023/A:1004687016043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004687016043

Keywords

Navigation