Skip to main content
Log in

High-Temperature Corrosion of Iron–Chromium Alloys in Oxidizing–Chloridizing Conditions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An investigation has been carried out into the effects of 0.1 to 1.0% HCl onthe oxidation of Fe–28%Cr and Fe–28%Cr–1%Y inargon–20%O2 at 600 and 700°C. At the higher temperature,the additions of HCl to the gas caused considerable increases in corrosionof the binary alloy, with the rates of metal loss actually being greaterthan those of iron in the 0.5 and 1% HCl-containing environments. Thick andmultilayered scales were observed; these were oxides, particularlyFeCr2O4 and Fe2O3, that developedfollowing formation and vapor phase transport of chlorine-containing speciesfrom the metal surface. The main metal-loss processes were evaporation ofFeCl2, CrCl2, and CrO2Cl2, withthe first two of these reacting with oxygen to form solid oxides in thescale, while the third was lost mainly to the environment. The addition of1% Y to the alloy resulted in a marked improvement in corrosion resistanceat 700°C, because of the reactive element facilitating rapidestablishment of a protective Cr2O3-rich layer andpromoting the formation of condensed chlorides rather than the more volatileCrO2Cl2 phase. At 600°C, additions of HCl toargon–20%O2 caused formation of some localized condensedchlorides on both alloys, but the corrosion rates were relatively low,because of protection by a Cr2O3-rich oxide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. J. Grabke, E. Reese, and M. Spiegel, Corros. Sci. 37, 1023 (1995).

    Google Scholar 

  2. E. Reese and H. J. Grabke, Werkst. Korros. 44, 41 (1993).

    Google Scholar 

  3. E. Reese and H. J. Grabke, Werkst. Korros. 43, 547 (1992).

    Google Scholar 

  4. W. Steinkusch, Werkst. Korros. 40, 160 (1989).

    Google Scholar 

  5. Y. Y. Lee and M. J. McNallan, Metall. Trans. 18A, 1099 (1987).

    Google Scholar 

  6. H. H. Krause, High Temperature Corrosion in Energy Systems, M. F. Rothman, ed. (AIME, New York, 1985), p. 83.

    Google Scholar 

  7. C. E. Smeltzer, M. E. Ward, and A. D. Russel, High Temperature Corrosion in Energy Systems, M. F. Rothman, ed. (AIME, New York, 1985), p. 529.

    Google Scholar 

  8. A. S. Kim and M. J. McNallan, Corrosion 46, 746 (1990).

    Google Scholar 

  9. K. N. Strafford, P. K. Datta, and G. Forster, Mater. Sci. Eng. A120, 61 (1989).

    Google Scholar 

  10. D. Bramhoff, H. J. Grabke, and H. P. Schmidt, Werkst. Korros. 40, 642 (1989).

    Google Scholar 

  11. M. J. McNallan, J. M. Oh, and W. W. Liang, Trans. Jpn. Inst. Met. JIMIS-3, p. 677 (1983).

  12. A. Zaks, M. Speigel, and H. J. Grabke, Mat. Corr. 50, 561 (1999).

    Google Scholar 

  13. J. C. Liu and M. J. McNallan, Mater. and Corr. 50, 253 (1999).

    Google Scholar 

  14. V. A. C. Haanappel, N. W. J. Fransen, H. D. van Corbach, and P. J. Gellings, Corrosion 48, 812 (1992).

    Google Scholar 

  15. P. Mayer, A. V. Manolescu, and S. J. Thorpe, Corrosion Resistant Materials for Coal Conversion Systems, D. B. Meadowcroft and M. I. Manning, eds. (Applied Science Publ., Amsterdam, 1983), p. 87.

    Google Scholar 

  16. Y. Ihara, K. Sakiyama, and K. Hashimoto, Trans. Jpn. Inst. Met. JIMIS-3, p. 669 (1983).

  17. P. L. Daniel and R. A. Rapp, in Advances in Corrosion Science and Technology, M. G. Fontana and R. W. Staehle, eds. (Plenum Press, New York, 1976),p. 55.

    Google Scholar 

  18. W. D. Halstead, Corros. Sci. 15, 603 (1975).

    Google Scholar 

  19. F. H. Stott and C. Y. Shih, Mater. Corros. 51, 277 (2000).

    Google Scholar 

  20. Z. Foroulis, Trans. Jpn. Inst. Met. JIMIS-3, p. 699 (1983).

  21. Y. Ihara, H. Ohgame, and K. Sakiyama, Corros. Sci. 23, 167 (1983).

    Google Scholar 

  22. J. M. Abels and H. H. Strehblow, Corros. Sci. 39, 115 (1997).

    Google Scholar 

  23. R. J. Fruehan and L. J. Martonik, Metall. Trans. 4, 2789 (1973).

    Google Scholar 

  24. A. H. O. Skelland, in Diffusional Mass Transfer, A. H. P. Skelland, ed. (Wiley, New York, 1974), p.110.

    Google Scholar 

  25. J. O. Hirschfelder, in Molecular Theory of Gases and Liquids, J. O. Hirschfelder, F. F. Curtiss and R. B. Bird, eds. (Wiley, New York, 1954), p. 514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stott, F.H., Shih, C.Y. High-Temperature Corrosion of Iron–Chromium Alloys in Oxidizing–Chloridizing Conditions. Oxidation of Metals 54, 425–443 (2000). https://doi.org/10.1023/A:1004686417317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004686417317

Navigation