Skip to main content
Log in

Theory of the Self-Organized Critical State in Nonequilibrium 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A near-critical sample of superfluid 4He subjected to a combination of a heat current Q and a gravitational field g has recently been confirmed experimentally to exhibit a “self-organized critical” (SOC) state, in which the local temperature profile T(z) parallels the local superfluid transition temperature, T λ(z), so that T(z)−T λ(z) is independent of the vertical coordinate z. We show that there is a particular heat current Q 0(g)∝g such that the SOC state lies in the normal phase only when Q<Q 0(g). The SOC state is shown to be dynamically stable and, surprisingly, to possess a propagating mode in which perturbations travel “upstream” at a particular speed c SOC(Q). For Q>Q 0(g) the SOC state is pushed below the superfluid transition. We present a model based on the Model F equations that shows that the resulting superfluid state is intrinsically dynamical and supports an average temperature gradient by way of an approximately uniform density of recurring phase slips. The role of a certain local dynamical instability temperature, T c(Qz), in the nucleation of the phase slips is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. V. Duncan, G. Ahlers, and V. Steinberg, Phys. Rev. Lett. 60, 1522 (1988).

    Google Scholar 

  2. F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996).

    Google Scholar 

  3. D. Murphy and H. Meyer, Phys. Rev. B 57, 536 (1998).

    Google Scholar 

  4. W. A. Moeur, P. K. Day, F.-C. Liu, S. T. P. Boyd, M. J. Adriaans, and R. V. Duncan, Phys. Rev. Lett. 78, 2421 (1997).

    Google Scholar 

  5. See, e.g., N. Giordano, P. Muzikar, and S. S. C. Burnett, Phys. Rev. B 36, 667 (1987); P. Muzikar and N. Giordano, Physica A 157, 742 (1989).

    Google Scholar 

  6. W. Y. Tam and G. Ahlers, Phys. Rev. B 32, 5932 (1985); 33, 183 (1986).

    Google Scholar 

  7. M. Dingus, F. Zhong, and H. Meyer, J. Low Temp. Phys. 65, 185 (1986).

    Google Scholar 

  8. A. Onuki, Jpn. J. Appl. Phys. 26, 365 (1987).

    Google Scholar 

  9. A. Onuki, J. Low Temp. Phys. 50, 433 (1983).

    Google Scholar 

  10. R. Haussmann and V. Dohm, Phys. Rev. Lett. 72, 3060 (1994); Z. Phys. B 87, 229 (1992).

    Google Scholar 

  11. P. B. Weichman, A. Prasad, R. Mukhopadhyay, and J. Miller, Phys. Rev. Lett. 80, 4923 (1998).

    Google Scholar 

  12. J. A. Lipa, D. R. Swansson, J. A. Nissen, T. C. P. Chui, and U. E. Israelson, Phys. Rev. Lett. 76, 944 (1996).

    Google Scholar 

  13. J. Machta, D. Candela, and R. B. Hallock, Phys. Rev. B 47, 4581 (1993); G. Ahlers and F.-C. Liu, J. Low Temp. Phys. 105, 255 (1996).

    Google Scholar 

  14. A. Onuki, J. Low Temp. Phys. 104, 133 (1996).

    Google Scholar 

  15. An anonymous referee has pointed out that a more general class of periodic pattern forming systems with an Eckhaus instability [see, e.g., P. C. Hohenberg and M. C. Cross, Rev. Mod. Phys. 65, 851 (1993) for a review] might also show self-organization of this same kind.

    Google Scholar 

  16. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Google Scholar 

  17. David Goodstein, private communication.

  18. L. Goldner and G. Ahlers, Phys. Rev. B 45, 13129 (1992).

    Google Scholar 

  19. Boundary effects may also require independent superfluid and normal fluid motions. A. Onuki and Y. Yamazaki, J. Low Temp. Phys. 103, 131 (1996), have considered the effects of side walls, where j n must vanish while j s remains nonzero.

    Google Scholar 

  20. See also R. Haussmann, J. Low Temp. Phys. 88, 249 (1992).

    Google Scholar 

  21. R. V. Duncan, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichman, P.B., Miller, J. Theory of the Self-Organized Critical State in Nonequilibrium 4He. Journal of Low Temperature Physics 119, 155–179 (2000). https://doi.org/10.1023/A:1004668820870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004668820870

Keywords

Navigation