Skip to main content
Log in

Thermodynamics of a Trapped Bose Condensate with Negative Scattering Length

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the Bose–Einstein condensation (BEC) for a system of 7Li atoms, which have negative scattering length (attractive interaction), confined in a harmonic potential. Within the Bogoliubov and Popov approximations, we numerically calculate the density profile for both condensate and non-condensate fractions and the spectrum of elementary excitations. In particular, we analyze the temperature and number-of-boson dependence of these quantities and evaluate the BEC transition temperature T BEC. We calculate the loss rate for inelastic two- and three-body collisions. We find that the total loss rate is strongly dependent on the density profile of the condensate, but this density profile does not appreciably change by increasing the thermal fraction. Moreover, we study, using the quasi-classical Popov approximation, the temperature dependence of the critical number N c of condensed bosons, for which there is the collapse of the condensate. There are different regimes as a function of the total number N of atoms. For N<N c the condensate is always metastable but for N>N c the condensate is metastable only for temperatures that exceed a critical value T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 189 (1995); K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Drufee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995); C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).

    Google Scholar 

  2. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [English. Transl. Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  3. W. Ketterle, M. R. Andrews, K. B. Davis, D. S. Drufee, D. M. Kurn, M. O. Mewes, and N. J. vanDruten, Physica Scripta T66, 31 (1996).

    Google Scholar 

  4. D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev. Lett. 78, 1842 (1997).

    Google Scholar 

  5. A. Griffin, Phys. Rev. B 53, 9341 (1996).

    Google Scholar 

  6. K. Huang, Statistical Mechanics, John Wiley, New York (1963).

    Google Scholar 

  7. E. P. Gross, Nuovo Cimento 20, 454 (1961); J. Math. Phys. 2, 195 (1963).

    Google Scholar 

  8. V. N. Popov, Functional Integrals and Collective Modes, Cambridge University Press, New York (1987), Cap. 6.

    Google Scholar 

  9. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4633 (1996); Phys. Rev. Lett. 78, 3987 (1997); J. Low Temp. Phys. 109, 309 (1997).

    Google Scholar 

  10. E. R. I. Abraham, W. I. McAlexsander, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 74, 1315 (1995).

    Google Scholar 

  11. P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards, Phys. Rev. A 51, 4704 (1995).

    Google Scholar 

  12. V. V. Goldmann, I. F. Silvera, and A. J. Leggett, Phys. Rev. B 24, 2870 (1981); V. Bagnato, D. E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987).

    Google Scholar 

  13. S. Grossman and M. Holthaus, Phys. Lett. A 208, 188 (1995); K. Kirsten and D. J. Toms, Phys. Rev. A 54, 4188 (1996); W. Ketterle and N. J. vanDruten, Phys. Rev. A 54, 656 (1996); H. Haugerund, T. Haugset, and F. Ravndal, Phys. Lett. A 225, 18 (1997).

    Google Scholar 

  14. S. Koonin and C. D. Meredith, Computational Physics, Addison-Wesley, Reading (1990).

    Google Scholar 

  15. L. Salasnich, Mod. Phys. Lett. B 11, 1249 (1997); Mod. Phys. Lett. B 12, 649 (1998).

    Google Scholar 

  16. E. Cerboneschi, R. Mannella, E. Arimondo, and L. Salasnich, Phys. Lett. A 249, 245 (1998).

    Google Scholar 

  17. A. Parola, L. Salasnich, and L. Reatto, Phys. Rev. A 57, R3180 (1998).

    Google Scholar 

  18. L. Reatto, A. Parola, and L. Salasnich, J. Low Temp. Phys. 113, 195 (1998).

    Google Scholar 

  19. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 59, 2990 (1999).

    Google Scholar 

  20. M. Houbiers and H. T. C. Stoof, Phys. Rev. A 54, 5055 (1996).

    Google Scholar 

  21. C. A. Sackett, J. M. Gerton, M. Welling, and R. G. Hulet, Phys. Rev. Lett. 82, 876 (1999).

    Google Scholar 

  22. R. J. Dodd, M. Edwards, C. J. Williams, and C. W. Clark, Phys. Rev. A 54, 661 (1996); H. Shi, W.-M. Zheng, Phys. Rev. A 55, 2930 (1997); C. Huepe, S. Metens, G. Dewel, P. Borckmans, and M. E. Brachet, Phys. Rev. Lett. 82, 1616 (1999).

    Google Scholar 

  23. M. J. Davis, D. A. W. Hutchinson, and E. Zaremba, Preprint cond-mat/9906334.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozzi, B., Salasnich, L., Parola, A. et al. Thermodynamics of a Trapped Bose Condensate with Negative Scattering Length. Journal of Low Temperature Physics 119, 57–77 (2000). https://doi.org/10.1023/A:1004660519053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004660519053

Keywords

Navigation