Skip to main content
Log in

Influence of voids on the stress distribution and deformation behaviour of epoxies under uniaxial deformation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A zero-order model is presented, which allows calculation of the stress distribution in porous epoxies by taking into account the interaction between randomly distributed voids. These results demonstrate that the mean value of the stress concentration factor increases with the volume fraction of voids. This leads to a decrease in sample yield strength. However, the generation of a porous morphology also creates a considerable number of regions where the stress is completely released. The theoretical predictions are in good agreement with experimental results obtained with macroporous epoxies, which were prepared based on the chemically induced phase separation technique, and tested under uniaxial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bagheri and R. A. Pearson, in25th International SAMPE Technical Conference” (1993) pp. 25–39.

  2. R. A. Bubeck, D. J. Buckley, E. J. Kramer and H. R. Brown, J. Mater Sci. 26 (1991) 6249.

    Google Scholar 

  3. C. B. Bucknall, V. L. P. Soares, H. H. Yang and X. C. Zhang, Macromol. Symp. 101 (1996) 265.

    Google Scholar 

  4. K. Dijkstra, A. van der Wal and R. J. Gaymans, J. Mater Sci. 29 (1994) 3489.

    Google Scholar 

  5. D. Dompas, G. Groeninckx, M. Isogawa, T. Hasegawa and M. Kadokura, Polymer 35 (1994) 4750.

    Google Scholar 

  6. Y. Huang, D. Hunston, A. J. Kinloch and C. Riew, Adv. Chem. Ser. 233 (1993) 1.

    Google Scholar 

  7. A. Lazzeri and C. B. Bucknall, J. Mater Sci. 28 (1993) 6799.

    Google Scholar 

  8. J. P. Pascault, Macromol. Symp. 93 (1995) 43.

    Google Scholar 

  9. R. Schirrer and C. Fond, Rev. Metall. Cah. Inf. Techn. 92 (1995) 1027.

    Google Scholar 

  10. A. F. Lu, Thesis no. 1391, Swiss Federal Institute of Technology (1995).

  11. C. K. Riew and J. K. Gillham, “Rubber-modified thermoset resins”, Advances in Chemistry Series, Vol. 208 (1984).

  12. C. K. Riew, “Rubber toughened plastics”, Advances in Chemistry Series, Vol. 222 (1989).

  13. C. K. Riew and A. J. Kinloch, “Toughened Plastics: Science and Engineering”, Advances in Chemistry Series, Vol. 233 (1993).

  14. A. A. Collyer, “Rubber toughened engineering plastics” (Chapman and Hall, London 1994).

    Google Scholar 

  15. B. J. Cardwell and A. F. Yee, ANTEC (1995) 1519.

  16. C. A. Cruz Jr and S. Havriliak Jr, ibid. (1995) 1521.

  17. Y. Huang and A. J. Kinloch, Polymer 33 (1992) 1330.

    Google Scholar 

  18. L. Boogh, B. Petterson, S. Japon and J. A. MÅnson, inProceedings of ICCM”, Vol. 10 (1995) pp. 389–96.

    Google Scholar 

  19. H. J. Sue, J. Mater. Sci. 27 (1992) 3098.

    Google Scholar 

  20. C. B. Bucknall, A. Karpodinis and X. C. Zhang, ibid. 29 (1994) 3377.

    Google Scholar 

  21. R. Schirrer, C. Fond and A. Lobbrecht, ibid. 31 (1996) 6409.

    Google Scholar 

  22. C. Fond and R. Schirrer, Int. J. Fract. 77 (1996) 141.

    Google Scholar 

  23. R. Bagheri and R. A. Pearson, Polymer 36 (1995) 4883.

    Google Scholar 

  24. Idem, ibid. 37 (1996) 4529.

  25. Y. Huang and A. J. Kinloch, J. Mater. Sci. Lett. 11 (1992) 484.

    Google Scholar 

  26. D. Li, A. F. Yee, I. W. Chen and K. Takahashi, J. Mat. Sci. 29 (1994) 2205.

    Google Scholar 

  27. S. Wu, J. Appl. Polym. Sci. 35 (1988) 549.

    Google Scholar 

  28. A. Margolina and S. Wu, Polymer 29 (1988) 2170.

    Google Scholar 

  29. J. Karger-kocsis, Polym. Eng. Sci. 36 (1996) 203.

    Google Scholar 

  30. Idem, Polym. Bull. 36 (1996) 119.

    Google Scholar 

  31. J. Kiefer, J. G. Hilborn, J. A. E. Manson, Y. Leterrier and J. L. Hedrick, Macromolecules 29 (1996) 4158.

    Google Scholar 

  32. J. Kiefer, J. G. Hilborn and J. L. Hedrick. Polymer 37 (1996) 5715.

    Google Scholar 

  33. J. Kiefer, R. Porouchani, D. Mendels, J. B. Ferrer, C. Fond, J. L. Hedrick, H. H. Kausch and J. G. Hilborn in “Microporous and macroporous materials”, MRS Symposium Proceedings, Vol. 431 (1996) 527–32.

    Google Scholar 

  34. J. Kiefer, R. Porouchani, D. Mendels, J. B. Ferrer, C. Fond, J. G. Hilborn and H. H. Kausch, Oberflächen Werkstoffe 5 (1996) 12.

    Google Scholar 

  35. J. Kiefer, H. H. Kausch and J. G. Hilborn, Polym. Bull. 38 (1997) 477.

    Google Scholar 

  36. Y. Huang and A. J. Kinloch, J. Mater. Sci. 27 (1992) 2763.

    Google Scholar 

  37. F. J. Guild and A. J. Kinloch, ibid. 30 (1995) 1689.

    Google Scholar 

  38. J. D. Eshelby, Proc. R. Soc. Lond. 241A (1957) 376.

    Google Scholar 

  39. Idem, ibid. 252A (1959) 561.

  40. Z. A. Moschovidis and T. Mura, J. Appl. Mech. 42 (1975) 847.

    Google Scholar 

  41. N. M. Ferrers, J. Pure Appl. Math. XIV (1877) 1.

    Google Scholar 

  42. F. W. Dyson, ibid. XXV (1891) 259.

    Google Scholar 

  43. J. N. Goodier, ASME Trans. 55 (1933) 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fond, C., Kiefer, J., Mendels, D. et al. Influence of voids on the stress distribution and deformation behaviour of epoxies under uniaxial deformation. Journal of Materials Science 33, 3975–3984 (1998). https://doi.org/10.1023/A:1004652930581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004652930581

Keywords

Navigation