Skip to main content
Log in

The influence of carbon on the phases in the copper-titanium system and their precipitation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of carbon on the phases occurring in the copper-titanium system has been experimentally investigated. Samples were fabricated from elemental copper and titanium. Carbon was added in the form of graphite or as titanium carbide. The samples were encapsulated, heat-treated at 1173 or 1373 K for 24 h and subsequently quenched in brine. The phases present at the treatment temperature were identified, as well as the phases occurring during solidification. The microstructure indicates the presence of a miscibility gap. The composition of the phases were determined using EDS-analysis. The composition of the copper phase was found to show a great variation caused by the precipitation sequence during quenching of the melts. The complex precipitation also caused both TiCu4 and the meta-stable TiCu3 to form. The composition of TiCu was found to show a wider compositional interval than earlier found. The variation of its composition with the nominal composition suggests that TiCu can dissolve carbon. The pure Ti phases also showed larger solubility of copper than earlier found. An outline of the precipitation sequence is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Murray, Bull. Alloy Phase Diag. 1(4) (1983) 81–95.

    Google Scholar 

  2. V. N. Eremenko, Y. I. Buyanov and S. B. Prima, Porosh. Met. Akad. Nauk. Ukr. SSR 6(6) (1966) 77–87.

    Google Scholar 

  3. U. Zwicker, E. Kalsch, T. Nihimura, D. Ott and H. Seilstorfer,Metall. 12(20) (1966) 1252–1255.

    Google Scholar 

  4. W. Trzebiatowski, J. Berak and T. Romotowski, Roczniki Chemmii 27 (1953) 426–437.

    Google Scholar 

  5. A. Joukainen, N. J. Grant and C. F. Floe, Trans AIME 194 (1952) 766–770.

    Google Scholar 

  6. E. Raub, P. Walter and M. Engel, Z. Metallkde 43 (1952) 112–118.

    Google Scholar 

  7. V. N. Vigdorovitch, A. N. Krestovnikov and M. V. Malitsev, Izv. Akad. Nauk. SSR Otd. Tech, Nauk 2 (1958) 145–148.

    Google Scholar 

  8. K. Schubert, Z. Metallkde. 3(56) (1965) 197–198.

    Google Scholar 

  9. A. K. Sinha, Trans. AIME 245 (1969) 237–240.

    Google Scholar 

  10. A. D. Mcquilan, J. Inst. Met. (79) (1951) 73–88.

    Google Scholar 

  11. G. Vigier, J. M. Pelletier and J. Merlin, J. Less-Common Met. (64) (1979) 175–183.

    Google Scholar 

  12. J. A. Cornie, A. Datta and W. A. Soffa, Metall. Trans. 4 (1973) 727–733.

    Google Scholar 

  13. D. E. Laughlin and L. W. Cahn, Acta Metall. (23) (1975) 329–339.

    Google Scholar 

  14. F. Laves and H. J. Wallbaum, Naturwissenschaften (27) (1939) 674–675.

    Google Scholar 

  15. N. Karlsson, J. Inst. Met. 79 (1951) 391–405.

    Google Scholar 

  16. B. C. Giessen and D. Szymanski, J. Appl. Cryst. (4) (1971) 257–259.

    Google Scholar 

  17. M. Sakata, N. Cowlam and H. A. Davies, J. Phis. F.: Metal. Phys. 12(9) (1979) L235–L240.

    Google Scholar 

  18. D. Roux, J. F. Sadoc, P. Lagarde and A. Fontaine, J. Phys. Colloq. C8 8(41) (1980) C207–C210.

    Google Scholar 

  19. M. Sakata, N. Cowlam and H. A. Davies, ibid. 8(41) (1980) C190–C193.

    Google Scholar 

  20. Idem., J. Phis. F.: Metal. Phys. 11 (1981) L157–L162.

    Google Scholar 

  21. M. H. Mueller, M. V. Nevitt and H. W. Knott, Trans. AIME 224 (1962) 709–714.

    Google Scholar 

  22. G. Luetjeringen and S. Weissmann, Metall. Trans. 1 (1970) 1641–1649.

    Google Scholar 

  23. J. C. Williams, R. Taggartand and D. H. Polonis, ibid. 2 (1971) 1139–1148.

    Google Scholar 

  24. M. B. Bever and C. F. Floe, Trans. AIME 166 (1946) 128–141.

    Google Scholar 

  25. M. E. Nicholsson, ibid. 224 (1962) 533–535.

    Google Scholar 

  26. L. L. Oden and N. A. Gokcen, Metall. Trans. (23B) (1992) 453–458.

    Google Scholar 

  27. T. B. Massalski, “Binary Alloy Phase diagrams” (ASM, Metals Park, Ohio, 44073, USA).

  28. S. Jonsson, TRITA-MAC 505, The Royal Institute of Technology, Division of Material Science, S100–44 Stockholm, Sweden.

  29. A. E. W. Jarfors, Mater. Sci. and Technol. 12 (1996) 990–994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarfors, A.E.W. The influence of carbon on the phases in the copper-titanium system and their precipitation. Journal of Materials Science 34, 4533–4544 (1999). https://doi.org/10.1023/A:1004649624362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004649624362

Keywords

Navigation