Skip to main content

Goldstone Boson Normal Coordinates in Interacting Bose Gases


Spontaneous symmetry breaking (SSB) is one of the basic aspects of collective phenomena such as phase transitions in statistical mechanics or ground-state excitations in field theory. In general, spectral analysis of SSB is related to the presence of a Goldstone boson particle. The explicit construction of the canonical variables (boson field operator and its adjoint) of this boson has so far been an open problem. In this paper, we consider the SSB of Bose–Einstein condensation in two models: the so-called imperfect or mean field Bose gas (which is nothing but a perfect ideal Bose gas including the property of equivalence of ensembles), and the Bogoliubov weakly interacting Bose gas. For both we construct explicitly the Goldstone boson field variables. The remarkable result is that in both cases the field and its adjoint field are formed as the “fluctuation operators” respectively of the order parameter operator and of the generator of the broken symmetry. The notion of “fluctuation operator” is essential for our mathematical construction. We find that although the order parameter has a critical fluctuation, the generator of the broken symmetry has a squeezed fluctuation of the same inverse rate. Furthermore, we prove that this canonical pair of variables decouples from the other variables of the system, and that these fluctuations behave dynamically as long-wavelength sound waves or as oscillator variables.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Goldstone, Il Nuovo Cimento 19:154 (1961).

    Google Scholar 

  2. 2.

    J. A. Swieca, Commun. Math. Phys. 4:1 (1967).

    Google Scholar 

  3. 3.

    D. Kastler, D. W. Robinson, and J. A. Swieca, Commun. Math. Phys. 2:108 (1966).

    Google Scholar 

  4. 4.

    D. Pines, Elementary Excitations in Solids (Benjamin, 1964).

  5. 5.

    C. Kittel, Quantum Theory of Solids (Wiley, 1963).

  6. 6.

    A. Davidov, Théorie du Solide (Editions MIR, 1980).

  7. 7.

    D. Goderis, A. Verbeure, and P. Vets, Il Nuovo Cimento B 106:375 (1991).

    Google Scholar 

  8. 8.

    M. Broidioi and A. Verbeure, Helv. Phys. Acta 64:1093 (1991).

    Google Scholar 

  9. 9.

    A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 69:329 (1992).

    Google Scholar 

  10. 10.

    M. Broidioi and A. Verbeure, Helv. Phys. Acta 66:155 (1993).

    Google Scholar 

  11. 11.

    D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 122:122 (1989).

    Google Scholar 

  12. 12.

    D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 128:533 (1990).

    Google Scholar 

  13. 13.

    P. W. Anderson, Phys. Rev. 112:1900 (1958).

    Google Scholar 

  14. 14.

    H. Stern, Phys. Rev. 147:94 (1966).

    Google Scholar 

  15. 15.

    T. Michoel, B. Momont, and A. Verbeure, Rep. Math. Phys. 41:361 (1998).

    Google Scholar 

  16. 16.

    B. Momont, A. Verbeure, and V. A. Zagrebnov, J. Stat. Phys. 89:633 (1997).

    Google Scholar 

  17. 17.

    K. Huang, Statistical Mechanics (Wiley, London, 1967).

    Google Scholar 

  18. 18.

    E. B. Davies, Commun. Math. Phys. 28:69 (1972).

    Google Scholar 

  19. 19.

    M. Fannes and A. Verbeure, J. Math. Phys. 21:1809 (1980).

    Google Scholar 

  20. 20.

    M. Fannes, J. V. Pulè, and A. Verbeure, Helv. Phys. Acta 55:391 (1982).

    Google Scholar 

  21. 21.

    N. Angelescu, J. G. Brankov, and A. Verbeure, J. Phys. A 29:3341 (1996).

    Google Scholar 

  22. 22.

    D. Petz, An Invitation to the Algebra of Canonical Commutation Relations, Leuven Notes in Mathematical and Theoretical Physics, Vol. 2, Ser. A (Leuven University Press, Leuven, 1990).

    Google Scholar 

  23. 23.

    N. Angelescu and A. Verbeure, Physica A 216:386 (1995).

    Google Scholar 

  24. 24.

    R. P. Feynman, Phys. Rev. 94:262 (1954).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michoel, T., Verbeure, A. Goldstone Boson Normal Coordinates in Interacting Bose Gases. Journal of Statistical Physics 96, 1125–1161 (1999).

Download citation

  • spontaneous symmetry breaking
  • Goldstone theorem
  • normal coordinates
  • interacting Bose gases
  • Bose–Einstein condensation
  • quantum fluctuations