Skip to main content
Log in

Structural and Chemical Analyses of a Thermally Grown Oxide Scale in Thermal Barrier Coatings Containing a Platinum–Nickel–Aluminide Bondcoat

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The structure and chemistry of the thermally grown oxide scale in a thermalbarrier coating having an electron beam-physical vapor depositedyttria-partially stabilized zirconia (YPSZ) topcoat and aplatinum–nickel–aluminide (Pt–Ni–Al) bondcoat werestudied using transmission electron microscopy. The scale consisted ofhexagonal aluminum oxide (α-Al2O3) in both as-coated and thermallycycled specimens; no metastable Al2O3 polymorphs were observed. In as-coatedspecimens, the scale's grains had a fine, columnarmorphology. ZrO2-rich dispersoids were observed both intra- andintergranularly throughout the scale. Thermally cycled specimens had aduplex scale structure: one band of grains adjacent to the YPSZ had anequiaxed morphology and contained ZrO2-rich dispersoids; a second band ofdispersoid-free grains adjacent to the bondcoat had a coarse, columnarmorphology. Porosity and cracks were associated with the interface betweenthe bands. The formation of the banded morphology and the cracking areproposed to be associated with the presence of the ZrO2-rich dispersoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Brown, Aerospace Amer. 34, 22 (1996).

    Google Scholar 

  2. A. Maricocci, A. Bartz, and D. Wortman, J. Thermal Spray Technol. 6, 193 (1997).

    Google Scholar 

  3. E. C. Duderstadt and B. A. Nagaraj, U.S. Patent No. 5,238,752, 24 August 1993.

  4. J. Cheng, E. H. Jordan, B. Barber, and M. Gell, Acta Mater. 46, 5839 (1998).

    Google Scholar 

  5. S. M. Meier, D. M. Nissley, and K. D. Sheffler, NASA CR 189111 (1991).

  6. E. J. Felton and F. S. Pettit, Oxid. Met. 10, 189 (1976).

    Google Scholar 

  7. J. Schaeffer, G. M. Kim, G. H. Meier, and F. S. Pettit, in The Role of Active Elements in the Oxidation Behavior of Higher Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, New York, 1989), pp. 231-267.

    Google Scholar 

  8. M. Gell, K. Vaidyanathan, B. Barber, J. Cheng, and E. Jordan, Metall. Trans. 30A, 427 (1999).

    Google Scholar 

  9. I. Levin and D. Brandon, J. Amer. Ceram. Soc. 81, 1995 (1998).

    Google Scholar 

  10. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metall. Trans. 20A, 499 (1989).

    Google Scholar 

  11. F. H. Stott, Mater. Sci. Forum 254, 19 (1997).

    Google Scholar 

  12. J. Peters and H. Grabke, Werkst. Korros. 35, 385 (1984).

    Google Scholar 

  13. B. A. Pint, J. R. Martin, and L. W. Hobbs, Oxid. Met. 39, 167 (1993).

    Google Scholar 

  14. F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163 (1976).

    Google Scholar 

  15. Y. H. Sohn, R. R. Biederman, and R. D. Sisson, Jr., J. Mater. Eng. Perform. 3, 55 (1994).

    Google Scholar 

  16. P. K. Wright, Mater. Sci. Eng. A245, 191 (1998).

    Google Scholar 

  17. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüssner, and K. B. Alexander, Mater. Sci. Eng. A245, 201 (1998).

    Google Scholar 

  18. O. Unal, T. E. Mitchell, and A. H. Heuer, J. Amer. Ceram. Soc. 77, 984 (1994).

    Google Scholar 

  19. K. Fritscher, M. Schmücker, C. Leyens, and U. Schulz, Mater. Sci. Forum 254, 965 (1997).

    Google Scholar 

  20. J. A. Conner, D. A. Moore, and R. D. Wustman, ASME 91-GT-379, 1991.

  21. M. R. Brickey and J. L. Lee, Microsc. Microanalysis 6, 231 (2000).

    Google Scholar 

  22. N. J. Zaluzec, Electron Microsc. Soc. Amer. Bull. 14, 67 (1984).

    Google Scholar 

  23. N. J. Zaluzec, Electron Microsc. Soc. Amer. Bull. 14, 61 (1984).

    Google Scholar 

  24. N. J. Zaluzec, Electron Microsc. Soc. Amer. Bull. 15, 67 (1985).

    Google Scholar 

  25. N. Birks, G. H. Meier, and F. S. Pettit, J. Mater. 46, 42 (1994).

    Google Scholar 

  26. J. Smialek, and R. Gibala, in High Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, TX, 1993), pp. 274-283.

    Google Scholar 

  27. J. L. Smialek, Metall. Trans. 9A, 309 (1978).

    Google Scholar 

  28. F. N. Rhines and J. S. Wolf, Metall. Trans. 1, 1701 (1970).

    Google Scholar 

  29. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, in Microscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 463-475.

    Google Scholar 

  30. A. M. Alper, R. N. McNally, and R. C. Doman, Amer. Ceram. Soc. Bull. 43, 643 (1964).

    Google Scholar 

  31. T. Kosmac, S. Kolar, and M. Trontelj, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer, eds. (The American Ceramic Society, Columbus, OH, 1983), pp. 546-552.

    Google Scholar 

  32. H. G. Scott, J. Mater. Sci. 10, 1527 (1975).

    Google Scholar 

  33. C. Wagner, Z. Phys. Chem. 21B, 25 (1933).

    Google Scholar 

  34. D. A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 1996), p. 429.

    Google Scholar 

  35. J. Doychak and M. Rühle, Oxid. Met. 31, 431 (1989).

    Google Scholar 

  36. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Google Scholar 

  37. R. A. Miller, J. Amer. Ceram. Soc. 67, 517 (1984).

    Google Scholar 

  38. A. M. Freborg, B. L. Ferguson, W. J. Brindley, and G. J. Petrus, Mater. Sci. Eng. A245, 182 (1998).

    Google Scholar 

  39. L. Lelait, S. Alpérine, C. Diot, and M. Mévrel, Mater. Sci. Eng. A121, 475 (1989).

    Google Scholar 

  40. S. Alpérine and L. Lelait, ASME 92-GT-317, 1992.

  41. S. Stecura, NASA TM-78976, 1978.

  42. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992), p. 552.

    Google Scholar 

  43. J. Doychak, J. L. Smialek, and C. A. Barrett, in Oxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (The Minerals, Metals & Materials Society, Warrendale, PA, 1988), pp. 41-55.

    Google Scholar 

  44. A. van Hook, Crystallization: Theory and Practice (Reinhold, New York, 1961), pp. 1-44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brickey, M.R., Lee, J.L. Structural and Chemical Analyses of a Thermally Grown Oxide Scale in Thermal Barrier Coatings Containing a Platinum–Nickel–Aluminide Bondcoat. Oxidation of Metals 54, 237–254 (2000). https://doi.org/10.1023/A:1004646227870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004646227870

Navigation