Skip to main content
Log in

Oxidation Behavior and Oxide Layers of Ti–50Al Intermetallics by Preoxidation in High-Pressure Oxygen

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of Ti–50Al intermetallics is improved bypreoxidation for 1, 4, or 16 hours in high-pressure, pure oxygen(≈3.9 atm) at 900°C. Specimens preoxidized for 1 hr exhibit betteroxidation resistance than others. Prolonged preoxidation time candeteriorate the oxidation resistance and reduce the parabolic-lineartransition time during subsequent cyclic oxidation in 800°C air. Theoxide-mound occurrence is an important factor for evaluating theeffectiveness of the preoxidation treatment in oxygen. The formationmechanism of Z-phase (Ti5Al3O2) in the Al-depleted layer beneath theflat oxide scale and that beneath the oxide mound are also proposed inthis study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. M. Dimiduk, D. B. Miracle, and C. H. Ward, Mater. Sci. Technol. 8, 367 (1992).

    Google Scholar 

  2. T. Shimizu, T. Iikubo, and S. Isobe, Mater. Sci. Eng. A153, 602 (1992).

    Google Scholar 

  3. Y. W. Kim, JOM 41, 30 (1994).

    Google Scholar 

  4. X. Dong, Z. Zhihong, L. Xianghuai, Z. Shichang, S. Taniguchi, T. Shibata, and T. Yamada, Surf. Coat. Technol. 66, 486 (1994).

    Google Scholar 

  5. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, JOM 48, 46 (1996).

    Google Scholar 

  6. S. Choudhury, H. C. Graham, and J. W. Hinze, Proceedings of the Symposium on Properties of High Temperature Alloys (The Electrochemical Society, Princeton, NJ, 1976), p. 668.

    Google Scholar 

  7. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 477 (1995).

    Google Scholar 

  8. F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski, and G. H. Meier, Oxid. Met. 50, 269 (1998).

    Google Scholar 

  9. E. Kobayashi, M. Yoshihara, and R. Tanaka, High Temp. Technol. 8, 179 (1990).

    Google Scholar 

  10. M. Yoshihara, T. Suzuki, and R. Tanaka, ISIJ Intern. 31, 1201 (1991).

    Google Scholar 

  11. S. Taniguchi, T. Shibata, and A. Murakami, Oxid. Met. 41, 103 (1994).

    Google Scholar 

  12. S. Taniguchi, T. Shibata, A. Murakami, and K. Chihara, Oxid. Met. 42, 17 (1994).

    Google Scholar 

  13. S. Taniguchi, T. Shibata, and S. Sakon, Mater. Sci. Eng. 198A, 85 (1995).

    Google Scholar 

  14. S. Taniguchi, Y. Tachikawa, and T. Shibata, Mater. Sci. Eng. 232A, 47 (1997).

    Google Scholar 

  15. W. E. Dowling, Jr. and W. T. Donlon, Scripta Metall. Mater. 27, 1663 (1992).

    Google Scholar 

  16. R. W. Beye and R. Gronsky, Acta Metall. Mater. 42, 1373 (1994).

    Google Scholar 

  17. R. Beye, M. Verwerft, J. T. M. De Hosson, and R. Gronsky, Acta Mater. 44, 4225 (1996).

    Google Scholar 

  18. N. Zheng, W. Fischer, H. Grübmeier, V. Shemet, and W. J. Quadakkers, Scripta Metall. Mater. 33, 47 (1995).

    Google Scholar 

  19. V. Shemet, P. Karduck, H. Hoven, B. Grushko, W. Fischer, and W. J. Quadakkers, Intermetallics 5, 271 (1997).

    Google Scholar 

  20. E. H. Copland, B. Gleeson, and D. J. Young, Acta Mater. 47, 2937 (1999).

    Google Scholar 

  21. V. Shemet, H. Hoven, and W. J. Quadakkers, Intermetallics 5, 311 (1997).

    Google Scholar 

  22. Y. F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann, and M. Rühle, Scripta Metall. Mater. 34, 707 (1996).

    Google Scholar 

  23. F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. Rühle, Mater. Corros. 48, 23 (1996).

    Google Scholar 

  24. E. Abe, M. Ohnuma, and M. Nakamura, Acta Mater. 47, 3607 (1999).

    Google Scholar 

  25. J. M. Rakowski, G. H. Meier, F. S. Pettit, F. Dettenwanger, E. Schumann, and M. Rühle, Scripta Metall. Mater. 35, 1417 (1996).

    Google Scholar 

  26. G. E. Co., U.S. patent 4, 780, 342, Oct. 25, 1988.

  27. B. G. Kim, G. M. Kim, and C. J. Kim, Scripta Metall. Mater. 33, 1117 (1995).

    Google Scholar 

  28. M. Gross, V. Kolarik, and A. Rahmel, Oxid. Met. 48, 171 (1997).

    Google Scholar 

  29. C. Lang and M. Schütze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  30. A. K. Misra, Metall. Trans. 22A, 715 (1991).

    Google Scholar 

  31. X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. van Loo, Acta Metall. Mater. 40, 3149 (1992).

    Google Scholar 

  32. Y. Shida and H. Anada, Mater. Trans. JIM 34, 236 (1993).

    Google Scholar 

  33. M. Schmitz-Niederau and M. Schütze, Oxid. Met. 52, 225 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MR., Wu, S.K. Oxidation Behavior and Oxide Layers of Ti–50Al Intermetallics by Preoxidation in High-Pressure Oxygen. Oxidation of Metals 54, 473–490 (2000). https://doi.org/10.1023/A:1004642602296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004642602296

Navigation