Skip to main content
Log in

Hot Corrosion of an EB-PVD Thermal-Barrier Coating System at 950°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Model thermal-barrier coating (TBC) systems consisting of cast NiCrAlYsubstrates and electron-beam, physically vapor-deposited (EB–PVD)partially yttria-stabilized zirconia (PYSZ) coatings with three differentmicrostructures were tested in 1-hr cycles at 950°C under hot-corrosionconditions (sodium and sodium/potassium sulfates) likely to occur inbiomass-derived fuel-fired gas turbines. In contrast to conditionsinitiating Type I hot-corrosion attack, a modified test procedure wasused in this study where periodically salt-coated specimens were subjectedto an oxygen atmosphere while SOx was omitted, thus taking into account theessentially sulfur-free biomass fuel-combustion atmosphere. For comparison,similar tests were conducted on bare MCrAlY-type alloys. TBC failure byspallation of the PYSZ coating was observed between 300 and 500 1-hrcycles. Irrespective of PYSZ microstructure and deposit chemistry, failurewas primarily induced by crack formation and propagation within thevoluminous oxide scale formed as a result of hot-corrosion attack of themetal, rather than degradation of the ceramic layer. Since the major attackmode of the TBC seemed to be hot corrosion of the bond coat, this paperhighlights degradation mechanisms and microstructures of uncoated bond-coatcompositions. On the basis of the present results, implications of thefailure mode of EB–PVD PYSZ on in-service components are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. E. Eaton, N. S. Bornstein, and J. T. DeMasi-Marcin, Proc. Internat. Gas Turbine Aeroengine Congr. Exhibition, ASME, Paper 96-GT-283 (1996).

  2. G. W. Goward, Surf. Coat. Technol. 108, 73 (1998).

    Google Scholar 

  3. C. Leyens, I. G. Wright, and B. A. Pint, in Elevated Temperature Coatings: Science and Technology III, J. M. Hampikian and N. B. Dahotre, eds. (TMS, Warrendale, Pennsylvania, 1999), pp. 79–90

    Google Scholar 

  4. T. N. Rhys-Jones and F. C. Toriz, High Temp. Technol. 7, 73 (1989).

    Google Scholar 

  5. R. L. Jones, Mater. at High Temp. 9, 228 (1991).

    Google Scholar 

  6. R. L. Jones, Experiences in Seeking Stabilizers for Zirconia Having Hot Corrosion Resistance and High Temperature Tetragonal (t‱) Stability, NRL/MR/6170-96-7841 (1996).

  7. N. S. Bornstein, JOM 48, 37 (1996).

    Google Scholar 

  8. N. S. Bornstein and W. P. Allen, Mater. Sci. Forum 251–254, 127 (1997).

    Google Scholar 

  9. C. Leyens, I. G. Wright, and B. A. Pint, Oxid. Met. 54, 255 (2000).

    Google Scholar 

  10. J. Stringer, Hot Corrosion in Gas Turbines, Metals and Ceramics Information Center, MCIC Report 72–08 (1972).

  11. D. A. Shores and K. L. Luthra, Fundamentals of High-Temperature Corrosion (Academic Press, New York, 1992).

    Google Scholar 

  12. M. A. DeCrescente and N. S. Bornstein, Corrosion 24, 127 (1968).

    Google Scholar 

  13. J. A. Goebel, F. S. Pettit, and G. W. Goward, Metall. Trans. 4, 261 (1973).

    Google Scholar 

  14. R. A. Rapp and Y. S. Zhang, JOM 12, 47 (1994).

    Google Scholar 

  15. M. F. Trubelja, D. M. Nissley, N. S. Bornstein, and J. T. D. Marcin, Proc. Advan. Turbine Systems Annu. Program Rev. Meet. U.S. Department of Energy, Washington, DC (1997).

    Google Scholar 

  16. C. Leyens, U. Schulz, B. A. Pint, and I. G. Wright, Surf. Coat. Technol. 120-121, 68 (1999).

    Google Scholar 

  17. F. C. Toriz, A. B. Thakker, and S. K. Gupta, Proc. Intern. Gas Turbine Aeroengine Congr., ASME, Paper 88-GT-279 (1988).

  18. M. P. Borom, C. A. Johnson, and L. A. Peluso, Surf. Coat. Technol. 87-88, 116 (1996).

    Google Scholar 

  19. I. G. Wright, C. Leyens, and B. A. Pint, Proc. Internat. Gas Turbine Aeroengine Congr., ASME (2000), pp. 2000-GT-19, New York.

  20. D. K. Gupta and D. S. Duvall, in Superalloys 1984, M. Gellet al., eds. (TMS, Warrendale, Pennsylvania, 1984), pp. 711–720.

    Google Scholar 

  21. K. Fritscher, C. Leyens, U. Schulz, H.-J. Rätzer-Scheibe, M. Peters, and W. A. Kaysser, Proc. 3rd Internat. Conf., Microsc. Oxidation, S. B. Newcomb and J. A. Little, eds. (The Institute of Materials, London, 1997), pp. 352–365.

    Google Scholar 

  22. D. L. Deadmore and C. E. Lowell, Effects of Impurities in Coal-Derived Liquids on Accelerated Hot Corrosion of Superalloys, DOE/NASA 2593/13 (1980).

  23. C. Leyens, I. G. Wright, B. A. Pint, and P. F. Tortorelli, in Cyclic Oxidation of High Temperature Materials, M. Schütze and W. J. Quadakkers, eds. (The Institute of Materials, London), pp. 169–186.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyens, C., Wright, I.G. & Pint, B.A. Hot Corrosion of an EB-PVD Thermal-Barrier Coating System at 950°C. Oxidation of Metals 54, 401–424 (2000). https://doi.org/10.1023/A:1004634400479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004634400479

Navigation