X-ray photoelectron spectroscopy and electrical properties studies of La2O3-doped strontium titanate ceramics prepared by sol-precipitation method

Abstract

X-ray photoelectron spectroscopy has been used to investigate the existence of Ti3+ on the surface of La2O3-doped strontium titanate and to determine its surface characteristics. The surfaces, having Sr/Ti ratios significantly varying from the stoichiometric ratio, revealed the presence of carbon and suggested the presence of hydroxyl groups on the surface, whose concentration largely decreased in the bulk. Ti3+ species existed as a function of the sintering conditions and were detected on the surface of (La, Sr)TiO3 sintered in air or in N2 by natural cooling. These samples had a lower electrical resistivity, especially when sintered in a N2 atmosphere. The surfaces of air oxidized SrTiO3 and quenched from high temperature contained no detectable amount of Ti3+, resulting in higher resistivity. However, the N2-sintered samples were dark blue in color and exhibited lower resistivity, semiconductivity, and lower valence oxidation state Ti existed when sintered above 1350°C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. M. Wilson and D. L. Coller, U. S. Patent no. 4,670,243 (1987).

  2. 2.

    P. P. Phule and S. H. Risbud, Mater. Sci. Eng. B 3 (1989) 241.

    Google Scholar 

  3. 3.

    C. F. Kao and W. D. Yang, Ceramics International 22 (1996) 57.

    Google Scholar 

  4. 4.

    F. Chaput and J. P. Boilot, J. Mater. Sci. Lett. 6 (1987) 1120.

    Google Scholar 

  5. 5.

    C. F. Kao and W. D. Yang, Mater. Sci. Eng. B B38 (1996) 127.

    Google Scholar 

  6. 6.

    P. E. C. Franken, J. Amer. Ceram. Soc. 64 (1981) 687.

    Google Scholar 

  7. 7.

    D. E. Rase and R. Roy, ibid. 38 (1955) 102.

    Google Scholar 

  8. 8.

    S. Waku, N. T. T. Res. Appl. Rept. 16 (1967) 975.

    Google Scholar 

  9. 9.

    A. G. Sarkisyan, V. M. Arutyunyan, V. E. Melikyan and E. V. Putnyn, Elektrokhimiya 22 (1986) 511.

    Google Scholar 

  10. 10.

    B. T. Chang, Solid State Comm. 43 (1982) 335.

    Google Scholar 

  11. 11.

    T. R. N. Avudaithai, Mater. Res. Bull. 25 (1990) 821.

    Google Scholar 

  12. 12.

    A. Mackor and G. Blasse, Chem. Phys. Lett. 77 (1981) 6.

    Google Scholar 

  13. 13.

    N. H. Chan, R. K. Sharma and D. M. Smyth, J. Electrochem. Soc. 128 (1981) 1762.

    Google Scholar 

  14. 14.

    H. P. R. Frederikse and W. R. Hosler, Phys. Rev. 155 (1967) 796.

    Google Scholar 

  15. 15.

    U. Balachand Ran and N. G. Eror, J. Electrochem. Soc.: Solid-State Science and Technology 129 (1982) 1021.

    Google Scholar 

  16. 16.

    V. E. Henrich, Rep. Prog. Phys. 48 (1985) 1481.

    Google Scholar 

  17. 17.

    S. Ferrer and G. A. Somorjai, Surface Science 94 (1980) 41.

    Google Scholar 

  18. 18.

    P. V. Nagarkar, P. C. Searson and F. D. Gealy, III, J. Appl. Phys. 69 (1991) 459.

    Google Scholar 

  19. 19.

    A. F. Carley, P. R. Chalker, J. C. Riviere and M. W. Roberts, J. Chem. Soc., Faraday Trans. I 83 (1987) 351.

    Google Scholar 

  20. 20.

    C. F. Kao and W. D. Yang, Mater. Trans. JIM 37 (1996) 142.

    Google Scholar 

  21. 21.

    V. Young and T. Otagawa, Appl. Surf. Sci. 20 (1985) 228.

    Google Scholar 

  22. 22.

    N. R. Armstrong and R. K. Quinn, Surface Science 67 (1977) 451.

    Google Scholar 

  23. 23.

    M. E. Levin, M. Salmeron, A. T. Bell and G. A. Somorjai, ibid. 195 (1988) 429.

    Google Scholar 

  24. 24.

    R. P. Vasquez, J. Electron Spectrosc. 56 (1991) 217.

    Google Scholar 

  25. 25.

    M. E. Pilleux, C. R. Grahmann and V. M. Fuenzalida, J. Amer. Ceram. Soc. 77 (1994) 1601.

    Google Scholar 

  26. 26.

    S. Myhra, J. C. Riviere, K. Hawkins and T. J. White, J. Mater. Res. 7 (1992) 482.

    Google Scholar 

  27. 27.

    D. S. Knotek and R. M. Glaister, Proc. Inst. Electr. Eng. Part B 109 (1961) 423.

    Google Scholar 

  28. 28.

    M. Fujimoto and M. Watanabe, J. Mater. Sci. 20 (1985) 2683.

    Google Scholar 

  29. 29.

    G. Rocker and W. Gopel, Surface Science 18 (1987) 530.

    Google Scholar 

  30. 30.

    M. V. Raymond and V. R. W. Amarakoon, J. Amer. Ceram. Soc. 73 (1990) 1308.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, WD. X-ray photoelectron spectroscopy and electrical properties studies of La2O3-doped strontium titanate ceramics prepared by sol-precipitation method. Journal of Materials Science 34, 3533–3544 (1999). https://doi.org/10.1023/A:1004622324417

Download citation

Keywords

  • Strontium
  • Electrical Resistivity
  • High Resistivity
  • Lower Resistivity
  • Stoichiometric Ratio