Skip to main content
Log in

Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analyses were used to characterise the microstructure and chemical composition of a glass and a glass-ceramic material obtained from incinerator filter fly ash. Although the as-quenched material (vitrified fly ash) was amorphous under the detection limits of XRD, a dispersion of droplets indicating glass-in-glass phase separation was observed. In the glass-ceramic material (crystallised vitrified fly ash), crystals belonging to the pyroxene group and spinels were identified. The microstructure of the glass-ceramic consisted of crystals embedded in an amorphous glassy phase. The crystalline phases contain a higher amount of metallic elements (e.g. Al, Cr, Fe, Ni and Zn and most probably also other heavy metals) than the residual glassy phase. A change of composition of the residual glass phase in the glass-ceramic product, in comparison with the parent glass, is considered to explain, in comparative terms, the higher toxic potential of the glass-ceramic over the glass. The present results demonstrate that for an accurate assessment of the correlation between toxicity, release of hazardous compounds and microstructure, high-resolution characterisation techniques must be employed. In this context, the effect of crystallisation on the chemical durability of the products remains as an important area for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Hjelmar, J. Hazardous Mat. 47 (1996) 345–368.

    Google Scholar 

  2. R. Derie, Waste Management 16 (1996) 711–716.

    Google Scholar 

  3. P. T. Williams, in “Waste Incineration and the Environment, Issues in Environmental Science and Technology,” edited by R. E. Hester and R. M. Harrison (Royal Society of Chemistry, 1994) pp. 27–52.

  4. G. C. C. Yang and S.-Y. Chen, J. Hazardous Materials 39 (1994) 317–333.

    Google Scholar 

  5. M. T. Ali and W. F. Chang, ACI Materials Journal 91 (1994) 256–263.

    Google Scholar 

  6. O. Barin, Wiss. und Umwelt 3/4 (1991) 159–167.

    Google Scholar 

  7. R. Gutman, Glass Sci. Technol. 69 (1996) 285–299.

    Google Scholar 

  8. R. Mergler, Glas-Ingenieur 6 (1993) 83–88.

    Google Scholar 

  9. M. Krauß, Glastech. Ber. Glass Sci. Technol. 70 (1997) 375–381.

    Google Scholar 

  10. D. De labarre, Verre 3 (1997) 33–39.

    Google Scholar 

  11. D. F. Bickford and R. Schumacher, Ceram. Eng. Sci. Proc. 18 (1995) 1–10.

    Google Scholar 

  12. A. R. Boccaccini, M. Kopf and G. Ondracek, Z. Angewandt. Umweltforschung 7 (1994) 357–367.

    Google Scholar 

  13. A. R. Boccaccini, M. Kopf and W. Stumpfe, Ceram. Int. 21 (1995) 231–235.

    Google Scholar 

  14. A. R. Boccaccini, M. Petitmermet and E. Wintermantel, Ceram. Bull. 76 (11) (1997) 75–78.

    Google Scholar 

  15. P. Callejas, ObtenciÓn, Microestructura y Propiedades de MaterialesVitrocer ámicos con EfectoAventuvina, Ed. Univ. Autónoma de Madrid (1988) p. 46.

  16. H. Rawson, “Properties and Applications of Glasses” (Elsevier, Amsterdam, 1980) p. 22.

    Google Scholar 

  17. L. A. Chick, R. O. Lokken and L. E. Thomas, Ceram. Bull. 62 (1983) 505–516.

    Google Scholar 

  18. J. MA. Ricon and R. Capel, Ceram. Int. 11 (1985) 97–102.

    Google Scholar 

  19. C. Hiriyama and F. E. Camp, Glass Technol. 10 (1969) 123–127.

    Google Scholar 

  20. J. MA. Rincon and H. Marquez, “Electron Microscopy,” Vol. 2 (EUREM 92, Granada, Spain, 1992) pp. 455–456.

    Google Scholar 

  21. A. Kipka, B. Luckscheiter and W. Lutze, Glastech. Ber. 66 (1993) 215–220.

    Google Scholar 

  22. J. MA. Rinc ÓN and M. Romero, Mat. de Construccion 46 (1996) 91–106.

    Google Scholar 

  23. L. Barbieri, T. Manfredini, I. Queralt, J. MA. Rincon and M. Romero, Glass Technol. 38 (1997) 165–170.

    Google Scholar 

  24. M. Pelino, C. Cantalini and J. MA. Rinc ÓN, J. Mater. Sci. 32 (1997) 4655–4660.

    Google Scholar 

  25. M. Romero and J. MA. Rinc ÓN J. Europ. Ceram. Soc. 18 (1998) 153–160.

    Google Scholar 

  26. M. Petitmermet, A. Favre, B. Shah, U. RÖsler, J. Mayer and E. Wintermantel, in “Monitoring and Verification of Bioremediation,” edited by R. E. Hinchee, G. S. Douglas and S. K. Ong (Battelle Press, Columbus, 1995) pp. 223–232.

    Google Scholar 

  27. T. R. Meadowcroft, Mat. Trans. JIM 37 (1996) 532–539.

    Google Scholar 

  28. S. D. Knowles and D. A. Brosnan, Canadian Ceramics Quarterly J. Canad. Ceram. Soc. 64 (1995) 231–234.

    Google Scholar 

  29. A. Dwivedi, Y. Berta and R. Speyer, J. Mater. Sci. 29 (1994) 2304–2308.

    Google Scholar 

  30. M. A. Audero, A. M. Bevilacqua, N. B. M. Bernasconi, D. O. Russo and M. E. Sterba, J. Nuc. Mat. 223 (1995) 151–156.

    Google Scholar 

  31. A. R. Boccaccini, J. Janczak, D. M. R. Taplin and M. KÖpf, Environmental Technology 17 (1996) 1193–1203.

    Google Scholar 

  32. L. Depmeier, U. Tomschi and G. Vetter, Müll und Abfall 9 (1997) 528–533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rincó, J.M., Romero, M. & Boccaccini, A.R. Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash. Journal of Materials Science 34, 4413–4423 (1999). https://doi.org/10.1023/A:1004620818001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004620818001

Keywords

Navigation