Skip to main content
Log in

Cyclic fatigue crack growth behaviour in β-(Si–Al–O–N) at ambient and elevated temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four-point bending fatigue tests on a hot-pressed sintered Sm–β-(Si–Al–O–N) ceramic were conducted at room temperature, 900 °C and 1000 °C in air under different load ratios and cyclic frequencies. The growth of indentation cracks was measured during the fatigue tests. The results indicate that the cyclic fatigue crack growth threshold is lower and crack growth rates are higher, for given values of Kmax, at 1000 °C than those at room temperature. The cyclic fatigue crack growth behaviour at 900 °C is similar to that at room temperature. It was found that the crack growth retardation due to cyclic fatigue loading is much more pronounced at higher frequencies. An increase in cyclic frequency from 1 to 10 Hz cause a reduction of up to two orders of magnitude in crack propagation rates. High-temperature cyclic fatigue crack growth rates increased and threshold stress intensity factor ranges decreased with increasing load ratio. Possible mechanisms for cyclic crack growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans and E. A. Charles, J. Amer. Ceram. Soc. 59 (1976) 371.

    Google Scholar 

  2. M. T. Laugier, J. Mater. Sci. Lett. 6 (1987) 355.

    Google Scholar 

  3. J. J. Petrovic, L. A. Jacobson, P. K. Talty and A. K. Vasudevan, J. Amer. Ceram. Soc. 58 (1975) 113.

    Google Scholar 

  4. M. G. Mendiratta and J. J. Petrovic, ibid. 61 (1978) 226.

    Google Scholar 

  5. S. Y. Liu, I.-Y. Chen and T. Y. Tien, ibid. 77 (1994) 137.

    Google Scholar 

  6. S. Y. Liu and I.-Y. Chen, Acta Mater. 44 (1996) 2079.

    Google Scholar 

  7. G.-D. Zhan, J.-L. Shi, T.-R. Lai and T.-S. Yen, J. Eur. Ceram. Soc. 17 (1997) 1267.

    Google Scholar 

  8. C.-K. Jack Lin, M. G. Jenkins and M. K. Ferber, J. Eur. Ceram. Soc. 12 (1993) 3.

    Google Scholar 

  9. G. D. Quinn, J. Mater. Sci. 25 (1990) 4361.

    Google Scholar 

  10. G. D. Quinn, ibid. 25 (1990) 4377.

    Google Scholar 

  11. C.-K. Jack lin, M. G. Jenkins and M. K. Ferber, ibid. 29 (1994) 3517.

    Google Scholar 

  12. L. Chuck, D. E. McCullum, N. L. Hecht and S. M. Goodrich, Ceram. Engng Sci. Proc. 12 (1991) 509.

    Google Scholar 

  13. Y. Mutoh, K. Yamaishi, N. Miyahara and T. Oikawa, in “Fracture mechanism of ceramics”, Vol. 10, edited byR. C. Bradt et al. (Plenum, New York 1992) pp. 427–440.

    Google Scholar 

  14. U. Ramamurthy, A. S. Kim, S. Suresh and J. J. Petrovic, J. Amer. Ceram. Soc. 76 (1993) 1953.

    Google Scholar 

  15. U. Ramamurthy, S. Suresh and J. J. Petrovic, ibid. 77 (1994) 2681.

    Google Scholar 

  16. D. Yao and J.-K. Shang, ibid. 77 (1994) 2911.

    Google Scholar 

  17. L. X. Han and S. Suresh, ibid. 72 (1989) 1233.

    Google Scholar 

  18. L. Ewart and S. Suresh, J. Mater. Sci. 27 (1992) 5181.

    Google Scholar 

  19. M. Masuda, T. Soma and M. Matsui, J. Eur. Ceram. Soc. 6 (1990) 253.

    Google Scholar 

  20. T. Hansson, Y. Miyashita and Y. Mutoh, in “Fracture mechanics of ceramics”, Vol. 12, edited byR. C. Bradt et al. (Plenum, New York 1996).

    Google Scholar 

  21. U. Ramamurthy, T. Hansson and S. Suresh, J. Amer. Ceram. Soc. 77 (1994) 2985.

    Google Scholar 

  22. D. B. Marshall and B. R. Lawn, ibid. 63 (1980) 532.

    Google Scholar 

  23. J. C. Newman Jr and I. S. Raju, National Aeronautics and Space Administration Technical Paper 1578 (available from National Technical Information Service, Springfield, VA) (1979).

    Google Scholar 

  24. “Standard recommended practice for fracture testing with surface-crack tension specimens”, ASTM Standard E 740–80, “ASTM Annual Book of Standards”, Vol. 3.01, (American Society of Testing and Materials, Philadelphia, PA 1983) pp. 740–750.

  25. G.-D. Zhan, J.-L. Shi, T.-R. Lai, T.-S. Yen, Y. Zhou and Y.-Z. Zhang, J. Mater. Sci. 31 (1996) 3535.

    Google Scholar 

  26. G.-D. Zhan, J.-L. Shi, D.-Y. Jiang, F.-Y. Wu, T.-R. Lai and T.-S. Yen, ibid. 31 (1996) 5045.

    Google Scholar 

  27. R. Kosswsky, J. Amer. Ceram. Soc. 56 (1973) 531.

    Google Scholar 

  28. M. Takatsu, K. Ohya and M. Ando, J. Jpn. Ceram. Soc. 98 (1990) 490.

    Google Scholar 

  29. R. H. Dauskardt, D. B. Marshall and R. O. Ritchie, J. Amer. Ceram. Soc. 73 (1990) 893.

    Google Scholar 

  30. M. J. Reece, F. Guiu and M. F. R. Sammur, ibid. 72 (1989) 348.

    Google Scholar 

  31. R. O. Ritchie and R. H. Dauskardt, J. Jpn. Ceram. Soc. 99 (1991) 1047.

    Google Scholar 

  32. M. Okazaki, A. J. McEvily and T. Tanaka, Metall. Trans. A 22 (1991) 1425.

    Google Scholar 

  33. S. Horibe, J. Eur. Ceram. Soc. 6 (1990) 89.

    Google Scholar 

  34. U. Ramamurthy, J. Amer. Ceram. Soc. 79 (1996) 945.

    Google Scholar 

  35. K. S. Chan and R. A. Rage, ibid. 76 (1993) 803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, GD., Reece, M.J., Li, M. et al. Cyclic fatigue crack growth behaviour in β-(Si–Al–O–N) at ambient and elevated temperatures. Journal of Materials Science 33, 3867–3874 (1998). https://doi.org/10.1023/A:1004620023312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004620023312

Keywords

Navigation