Skip to main content
Log in

Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties, electrical conductivity and microstructure of Cu-2.7wt%Ti and Cu-5.4wt%Ti alloys have been studied in different conditions employing hardness and resistivity measurements, tensile tests and optical, scanning and transmission electron microscopy. Ageing of undeformed as well as cold worked alloys raises their hardness, strength and electrical conductivity. The hardness increased from 120 VHN for solution treated Cu-2.7Ti to 455 VHN for ST + cold worked + peak aged Cu-5.4Ti alloy. While tensile stength increased from 430 to 1450 MPa, the ductility (elongation) decreased from 36 to 1.5%. A maximum conductivity of 25% International Annealed Copper Standard (IACS) for Cu-2.7Ti and 14.5% IACS for Cu-5.4Ti is obtained with the present treatments. Peak strength was obtained when the solution treated alloys are aged at 450°C for 16 hours due to precipitation of ordered, metastable and coherent β′, Cu4Ti phase having body centred tetragonal (bct) structure. While mechanical properties of Cu-Ti alloys are comparable, electrical conductivity is less than that of commercial Cu-Be-Co alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Saarivirta and H. S. Cannon, Met. Prog. 76 (1959) 81.

    Google Scholar 

  2. M. J. Saarivirta, Met. Industry 21 (1963) 758.

    Google Scholar 

  3. U. Heubner and G. Wassermann, Z. Metallkde 53 (1962) 152.

    Google Scholar 

  4. U. Zwicker, ibid. 53 (1962) 709.

    Google Scholar 

  5. T. Hakkarainen, PhD thesis, Helsinki Univ. Tech., 1971.

  6. J. A. Cornie, A. Datta and W. A. Soffa, Metall. Trans. A 4 (1973) 727.

    Google Scholar 

  7. D. E. Laughlin and J. W. Cahn, Acta Metall. 23 (1975) 329.

    Google Scholar 

  8. A. Datta and W. A. Soffa, ibid. 24 (1976) 987.

    Google Scholar 

  9. R. Wagner, in Proceedings of 5th International Conference on Strength of Metals and Alloys, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1979) Vol. 1, p. 645.

    Google Scholar 

  10. K.-E. Biehl and R. Wagner, in Proceedings of International Conference on Solid–Solid Phase Transformations, edited by H. I. Aaronson (The Met. Soc. of AIME, Warrendale, PA, USA, 1982) p. 185.

    Google Scholar 

  11. J. Dutkiewicz, Metall. Trans. A 8 (1977) 751.

    Google Scholar 

  12. S. Saji and E. Hornbogen, Z. Metallkde 69 (1978) 741.

    Google Scholar 

  13. S. Nagarjuna, M. Srinivas, K. Balasubramania and D. S. Sarma, Scripta Metall. Mater. 30 (1994) 1593.

    Google Scholar 

  14. Idem., ibid. 33 (1995) 1455.

  15. Idem., Acta. Mater. 44 (1996) 2285.

    Google Scholar 

  16. S. Nagarjuna, K. Balasubramanian and D. S. Sarma, Scripta Mater. 35 (1996) 147.

    Google Scholar 

  17. Idem., Mater. Trans. JIM 36 (1995) 1058.

    Google Scholar 

  18. Idem., J. Mater. Sci. 32 (1997) 3375.

    Google Scholar 

  19. S. Nagarjuna, M. Srinivas, K. Balasubramanian and D. S. Sarma, Int. J. Fatigue 19 (1996) 51.

    Google Scholar 

  20. S. Nagarjuna, K. Balasubramanian and D. S. Sarma, Mater. Sci. Eng. A 225 (1996) 118.

    Google Scholar 

  21. Standard test method for Tension testing of Metallic Materials [Metric], ASTM:E8M-89b,Vol. 03.01, edited by P. C. Fazio, M. Gorman, E. L. Gutman, C. T. Hsia, G. Jones, J. Kramer, C. M. Leinweber, P. A. McGee, S. P. Milligan and K. W. O'Brien (Annual Book of ASTM Standards, 1990) p. 146.

  22. Standard test method for resistivity of electrical conductor materials, ASTM: B193-89, Vol. 02.01, edited by P. C. Fazio, M. Gorman, E. L. Gutman, C. T. Hsia, G. Jones, J. Kramer, C. M. Leinweber, P. A. McGee, S. P. Milligan and K. W. O'Brien (Annual Book of ASTM Standards, 1990) p. 330.

  23. Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials, Metals Hand book, 10th ed., Vol. 2, edited by L. A. Abel, R. T. Kiepura, P. Thomas, H. F. Lampman and N. D. Wheaton (ASM International, OH, USA, 1990) p. 280.

  24. N. Karlsson, J. Inst. Metals 79 (1951) 391.

    Google Scholar 

  25. R. Knights and P. Wilkes, Acta Metall. 21 (1973) 1503.

    Google Scholar 

  26. R. C. Ecob, J. V. Bee and B. Ralph, Phys. Stat. Sol. (a) 52 (1979) 201.

    Google Scholar 

  27. Idem., Metall. Trans. A 11 (1980) 1407.

    Google Scholar 

  28. K. Saito, J. Phys. Soc. Japan 29 (1969) 1234.

    Google Scholar 

  29. H. T. Michels, I. B. Cadoff and E. Levine, Metall. Trans. A 3 (1972) 667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarjuna, S., Balasubramanian, K. & Sarma, D.S. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. Journal of Materials Science 34, 2929–2942 (1999). https://doi.org/10.1023/A:1004603906359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004603906359

Keywords

Navigation