Skip to main content
Log in

A System for Measurement of the Oxidation Kinetics of Metals Based on Solid-State Electrochemistry

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A novel system for measuring oxidation kinetics, based on solid-stateelectrochemistry, has been designed and developed. In this system, thepressure of the oxidizing gas was measured by a gas-pressure sensor andkept constant in the course of oxidation using aPt|ZrO2(Y2O3)|Pt oxygenpump. The mass of oxygen consumed was calculated by integrating the electriccurrent flowing through the solid-state electrochemical oxygen pump overtime. The oxidation kinetics curve could be plotted and displayed on thecomputer automatically and continuously. The reliability of, and operatingconditions for, the system have been determined. The results showed that thesystem can be used for accurate measurement of the kinetics of oxidation ofmetals in oxygen at pressures of 0.05 to 1 atm and over a wide range oftemperatures. The accuracy of measurement was close to 0.01 mg and could beimproved with further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold, London, 1983).

    Google Scholar 

  2. R. Zhu, Y. He, and H. Qi, High Temperature Corrosion and High Temperature Corrosion Resistant Materials (Shanghai Science and Technology Press, Shanghai, 1995) (in Chinese).

    Google Scholar 

  3. E. Warburg, Wiederman. Ann. Phys. 21, 622 (1884).

    Google Scholar 

  4. S. Geller, Solid Electrolytes: Topics in Applied Physics, Vol. 21 (1977).

  5. J. Hladik, Physics of Electrolytes, Vol. 2, Thermodynamics and Electrode Processes in Solid State Electrolytes (Academic Press, London, 1972).

    Google Scholar 

  6. E. C. Subbaru, Solid Electrolytes and Their Applications (Plenum Press, New York, 1980).

    Google Scholar 

  7. A. R. West, Ber. Bunsenges. Phys. Chem. 93, 1235 (1989).

    Google Scholar 

  8. B. C. H. Steele, Mater. Sci. Eng. 13B, 79 (1992).

    Google Scholar 

  9. W. M. Hickam and J. F. Zamaria, Instr. Control Systems 40, 87 (1967).

    Google Scholar 

  10. D. Yuan and F. A. Kroger, J. Electrochem. Soc. 116, 594 (1969).

    Google Scholar 

  11. Y. K. Agrawal, D. W. Short, R. Gruenke, and R. A. Rapp, J. Electrochem. Soc. 121, 354 (1974).

    Google Scholar 

  12. J. Fouletier, G. Vitter, and M. Kleitz, J. Appl. Electrochem. 5, 111 (1975).

    Google Scholar 

  13. J. Fouletier, H. Seinera, and M. Kleitz, J. Appl. Electrochem. 4, 305 (1974).

    Google Scholar 

  14. J. Fouletier, H. Seinera, and M. Kleitz, J. Appl. Electrochem. 5, 177 (1975).

    Google Scholar 

  15. E. M. Logothetis, W. C. Vassell, R. E. Hetrick, and W. J. Kaiser, Sensors Actuators 9, 363 (1986).

    Google Scholar 

  16. T. Takeuch, Sensors Actuators 14, 109 (1988).

    Google Scholar 

  17. M. Benammar, Measure. Sci. Technol. 5, 757 (1994).

    Google Scholar 

  18. R. M. A. Kocache, J. Swan, and D. F. Holman, J. Phys. E: Sci. Instrum. 17, 477 (1984).

    Google Scholar 

  19. S. P. S. Badwal, M. J. Bannister, and W. G. Garrett, J. Phys. E: Sci. Instrum. 20, 531 (1987).

    Google Scholar 

  20. N. M. Beekmans and L. Heyne, Philips. Tech. Rev. 31, 112 (1970).

    Google Scholar 

  21. C. M. Mari, S. Pizzini, L. Manes, and F. Toci, J. Electrochem. Soc. 124, 1831 (1977).

    Google Scholar 

  22. W. Piekarczyk, W. Weppner, and A. Rabenau, Mater. Res. Bull. 13, 1077 (1978).

    Google Scholar 

  23. T. J. Anderson and L. F. Donaghey, J. Chem. Thermodyn. 9, 603 (1977).

    Google Scholar 

  24. O. Porat and I. Riess, J. Electrochem. Soc. 141, 1533 (1994).

    Google Scholar 

  25. W. G. Bugden and J. N. Pratt, J. Chem. Thermodyn. 1, 353 (1969).

    Google Scholar 

  26. V. B. Tare and H. Schmalzried, Trans. Met. Soc. AIME 236, 444 (1966).

    Google Scholar 

  27. C. Y. Yang, H. S. Isaacs, and W. E. O'Grady, in High Temperature Corrosion, R. A. Rapp, ed. (NACE-6, Houston, 1983).

  28. Y. He, H. Yao, Z. Li, and H. Qi, Chinese Patent, 98101027.X (1998).

  29. W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, J. Amer. Ceram. Soc. 42, 393 (1959).

    Google Scholar 

  30. R. W. Vest and N. M. Tallan, J. Appl. Phys. 36, 543 (1965).

    Google Scholar 

  31. P. Zhengbo, The Quick Basic Programming Language (Science Press, Beijing, 1997) (in Chinese).

    Google Scholar 

  32. K. F. Scott and C. S. G. Phillips, J. Phys. E: Sci. Instrum. 13, 1316 (1980).

    Google Scholar 

  33. H. Dietz, Solid State Ionics 6, 175 (1982).

    Google Scholar 

  34. L. Heyne and N. M. Beekmans, Proc. Brit. Ceram. Soc. 19, 229 (1971).

    Google Scholar 

  35. H. Kaneko, W. C. Maskell, and B. C. H. Steele, Solid State Ionics 22, 161 (1987).

    Google Scholar 

  36. R. Zhu, Corrosion Sciences of Metals (Publishing House of Metallurgical Industry, Beijing, 1983) (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Yao, H., Li, Z. et al. A System for Measurement of the Oxidation Kinetics of Metals Based on Solid-State Electrochemistry. Oxidation of Metals 53, 323–339 (2000). https://doi.org/10.1023/A:1004593204901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004593204901

Navigation