Skip to main content
Log in

Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric and piezoelectric properties of perovskite materials including La modified Pb(Zr, Ti)O3 (PZT's), (Ba, Sr)TiO3 (BST) polycrystalline ceramics and Pb(Zn1/3 Nb2/3)O3-PbTiO3 (PZN-PT) single crystals were investigated for capacitor and actuator applications at cryogenic temperatures. PZTs were compositionally engineered to have decreased Curie temperatures (Tc) by La and Sn doping in order to compensate for the loss of extrinsic contributions to piezoelectricity at cryogenic temperatures. Enhanced extrinsic contributions resulted in piezoelectric coefficients (d33) as high as 250 pC/N at 30 K, superior to that of conventional DOD Type PZT's (d33~100 pC/N). This property enhancement was associated with retuning to the MPB at cryogenic temperatures. 5/95 BST with a dielectric maximum at 57 K was investigated to obtain high electrostrictive properties or E-field induced piezoelectricity. Coupling coefficients (k31) 25% comparable to those of the cryogenic PLZT piezoelectrics were observed at d.c. bias of 1.5 kV/cm and 50 K. Though significantly lower than the room temperature values, PZN-PT rhombohedral single crystals exhibited d33> 500 pC/N at 30 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Uchino, Am. Ceram. Soc. Bull. 65 (1986) 647.

    Google Scholar 

  2. G. H. Haertling, Ferroelectrics 75 (1987) 25.

    Google Scholar 

  3. B. Jaffe, W. R. Cook Jr.. and H. Jaffe, "Piezoelectric Ceramics," (Academic Press, New York, 1971).

    Google Scholar 

  4. S.-E. Park and T. R. Shrout, IEEE Trans. Ultras. Ferroelectric and Freq. Cont. 44 (1997) 1140.

    Google Scholar 

  5. X. L. Zhang, Z. X. Chen, L. E. Cross and W. A. Schulze, J. Mater. Sci. 18 (1983) 968.

    Google Scholar 

  6. R. Gerson, J. Appl. Phys. 33 (1962) 830.

    Google Scholar 

  7. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura and K. Uchino, Ferroelectrics 23 (1980) 187.

    Google Scholar 

  8. S. Nomura and K. Uchino, Ferroelectrics 41 (1982) 117.

    Google Scholar 

  9. J. D. Siegwarth and A. J. Morrow, J. Appl. Phys. 47 (1976) 4784.

    Google Scholar 

  10. E. N. Bunting, G. R. Shelton and A. S. Creamer, J. Am. Ceram. Soc. 30 (1947) 114.

    Google Scholar 

  11. S.-E. Park and T. R. Shrout, J. Appl. Phys. 82 (1977) 1804.

    Google Scholar 

  12. Y. Yamashita, in Proceedings of the 7th US-Japan Study Seminar on Dielectric and Piezoelectric Ceramics, Tukuba, 1995, pp. 181–195.

  13. M. L. Mulvihill, S.-E. Park, G. Risch, Z. Li, K. Uchino and T. R. Shrout, Jpn. J. Appl. Phys. I 35 (1996) 51.

    Google Scholar 

  14. IEEE Standard on Piezoelectricity (American National Standards Institute, Washington, DC, 1976).

  15. S. Wada, S.-E. Park, L. E. Cross and T. R. Shrout, in Proceeding of the 8th US-Japan Study Seminar on Dielectric and Piezoelectric Ceramics, Plymouth, 1997, pp. 11–15.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, DS., Park, SE., Shrout, T.R. et al. Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. Journal of Materials Science 34, 469–473 (1999). https://doi.org/10.1023/A:1004578225228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004578225228

Keywords

Navigation