Skip to main content
Log in

Computer simulation of grain growth by grain boundary migration during liquid phase sintering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

From many experiments with mixtures of small and large particles, it can be concluded that during liquid phase sintering, smaller particles partially dissolve and a solid phase precipitates on the larger particles. Therefore, the number of smaller particles decreases due to coarsening. The growth rate can be controlled either by the solid-liquid phase boundary reaction or by diffusion through the liquid phase. This dissolution-reprecipitation process leads to further densification by rearrangement of smaller and larger particles. The microstructure may change either by larger particles growing during the Ostwald ripening process or by shape accommodation. In this study, two-dimensional simulation of grain growth by grain boundary migration based on such a physical and corresponding numerical modeling of liquid phase sintering was considered. The simulation method developed is based on the defined submodels for model system definition, for solution-precipitation, and for grain coarsening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Lenel, Trans. AIME 175 (1948) 878.

    Google Scholar 

  2. Z. S. Nikolic, R. M. Spriggs, V. R. W. amarakoon and M. M. Ristic, in 98th Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 15, 1996 (Computational Modeling of Materials and Processing Symposium, Paper No. SX–6–96).

  3. Z. S. Nikolic, Sci. of Sintering, 28 Special Issue (1996) 55.

    Google Scholar 

  4. Z. S. Nikolic and R. M. Spriggs, Sci. of Sintering 26(1994) 1.

    Google Scholar 

  5. Z. S. Nikolic, R. M. Spriggs and M. M. Ristic, Z. Metallkd. 83 (1992) 769.

    Google Scholar 

  6. H. Fischmeister and G. Grimvall, in "Sintering and Related Phenomena," edited by G. C. Kuczynski (Plenum Press, New York, 1973) p. 119.

    Google Scholar 

  7. J. Crank, "The Mathematics of Diffusion" (Oxford University Press, Oxford 1956).

    Google Scholar 

  8. B. R. Dewey, "Computer Graphics for Engineers" (Harper & Row Publishers, New York, 1988).

    Google Scholar 

  9. T. O. Saetre and N. Ryum, J. Sci. Comp., in Proc. of Fall TMS meeting (1992).

  10. A. C. Fcocks and S. P. Gill, Acta Mater. 44 12 (1996) 4765.

    Google Scholar 

  11. S. C. Hansen and D. S. Phillips, Philos.Mag. A 47 (1983) 209.

    Google Scholar 

  12. M. P. Harmer, in "Structure and Properties of MgO and Al2O3 Ceramics," edited by W. D. Kingery (Am. Ceram. Soc., Columbus, Ohio, 1984) p. 679.

    Google Scholar 

  13. Y. K. Simpson, C. B. Carter, K. J. Morrisey, P. Augelini and J. Bentley, J. Mater. Sci. 21 (1986) 2689.

    Google Scholar 

  14. Oh-hun kwon and G. L. Messing, J. Am. Ceram. Soc. 73(1990) 275.

    Google Scholar 

  15. E. M. Levin, C. R. Robbins, and H. F. Mcmurdie in "Phase Diagrams for Ceramics," 2nd edition (Am. Ceram. Soc., Columbus, Ohio, 1981) p. 246.

    Google Scholar 

  16. Y. Oishi, R. Terai, and H. Ueda, in "Materials Science Research," Vol. 9, Mass Transport Process in Ceramics, edited by A. H. Heuer (Plenum Press, New York, 1985) p. 297.

    Google Scholar 

  17. Oh-hun kwon and G. L. Messing, Acta Metall. 39 (1991) 2059.

    Google Scholar 

  18. K. Hamano and K. Miura, in "Report Research Laboratory of Engineering Materials," No. 2 (Nagoya University, Nagoya, Japan 1977) p. 77.

    Google Scholar 

  19. G. E. Kalita, Refractories (Engl. Transl.), 20 (1979) 53.

    Google Scholar 

  20. M. Marder, Phys. Rev. Lett. 55 (1985) 2953.

    Google Scholar 

  21. P. W. Voorhees and M. E. Glicksman, Met. Trans. 15A (1984) 1081.

    Google Scholar 

  22. N. Akaiwa and P. W. Voorhees, Phys. Rev. 49 (1994) 3860.

    Google Scholar 

  23. N. Akaiwa and D. I. Meiron, ibid. 54, R13 (1996).

  24. Z. S. Nikolic, R. M. Spriggs and M. M. Ristic, Sci. of Sintering 24 (1992) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolic, Z.S. Computer simulation of grain growth by grain boundary migration during liquid phase sintering. Journal of Materials Science 34, 783–794 (1999). https://doi.org/10.1023/A:1004577014266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004577014266

Keywords

Navigation