Skip to main content
Log in

The multiple-scale averaging and dynamics of dispersion-managed optical solitons

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Multiple-scale averaging is applied to the nonlinear Schrödinger equation with rapidly varying coefficients, and use the results to analyze pulse propagation in an optical fiber when a periodic dispersion map is employed. The effects of fiber loss and repeated amplification are taken into account by use of a coordinate transformation to relate the pulse dynamics in lossy fibers to that in equivalent lossless fibers. Second-order averaging leads to a general evolution equation that is applicable to both return-to-zero (soliton) and non-return-to-zero encoding schemes. The resulting equation is then applied to the specific case of solitons, and an asymptotic theory for the pulse dynamics is developed. Based upon the theory, a simple and effective design of two-step dispersion maps that are advantageous for wavelength-division-multiplexed soliton transmission is proposed. Theuse of these specifically designed dispersion maps allows simultaneous minimization of dispersive radiation in several different channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (2nd ed.). San Diego: Academic Press (1995) 592pp.

    Google Scholar 

  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications. Oxford: Oxford University Press (1995) 320pp.

    Google Scholar 

  3. L. F. Mollenauer, E. Lichtman, M. J. Neubelt and G. T. Harvey, Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM. Electron. Lett. 29 (1993) 910–911.

    Google Scholar 

  4. L. F. Mollenauer, P. V. Manyshev and M. J. Neubelt, Demonstration of soliton WDM transmission at up to 8 × 10 Gbit/s error-free over transoceanic distances. In: Optical Fiber Communications '96 Technical Digest. Washington: Optical Society of America (1996) p. PD22.

    Google Scholar 

  5. G. P. Agrawal, Fiber-Optic Communication Systems. New York: Wiley (1992) 445pp.

    Google Scholar 

  6. I. R. Gabitov and S. K. Turitsyn, Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation. Opt. Lett. 21 (1996) 327–329.

    Google Scholar 

  7. C. Kurtzke, Suppression of fiber nonlinearities by appropriate dispersion management. IEEE Photonics Technol. Lett. 5 (1993) 1250–1253.

    Google Scholar 

  8. M. Nakazawa and H. Kubota, Construction of a dispersion-allocated soliton transmission-line using conventional dispersion-shifted nonsoliton fibers. Jpn. J. Appl. Phys. Lett. 34 (1995) L681-L683.

    Google Scholar 

  9. M. Suzuki, I. Morita, N. Edgawa, S. Yamamoto, H. Taga and S. Akiba, Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission. Electron. Lett. 31 (1995) 2027–2029.

    Google Scholar 

  10. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck and R. M. Derosier, Four-photon mixing and high-speed WDM systems. J. Lightwave Technol 13 (1995) 841–849.

    Google Scholar 

  11. J. C. Bronski and J. N. Kutz, Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management. Opt. Lett. 21 (1996) 937–939.

    Google Scholar 

  12. N. J. Smith and N. J. Doran, Modulational instabilities in fibers with periodic dispersion management. Opt. Lett. 21 (1996) 570–572.

    Google Scholar 

  13. W. Forysiak, K. J. Blow, and N. J. Doran, Reduction of Gordon-Haus jitter by post-transmission dispersion compensation. Electron. Lett. 29 (1993) 1225–1226.

    Google Scholar 

  14. J. P. Gordon and H. A. Haus, Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11 (1986) 665–667.

    Google Scholar 

  15. N. J. Smith, N. J. Doran, F. M. Knox and W. Forysiak, Energy-scaling characteristics of solitons in strongly dispersion-managed solitons. Opt. Lett. 21 (1996) 1981–1983.

    Google Scholar 

  16. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow and I. Bennion, Enhanced power solitons in optical fibers with periodic dispersion management. Electron. Lett. 32 (1996) 54–55.

    Google Scholar 

  17. T. Georges and B. Chabonnier, Reduction of the dispersive wave in periodically amplified links with initially chirped solitons. IEEE Photonics Tech. Lett. 9 (1997) 127–129.

    Google Scholar 

  18. I. Gabitov, E. G. Shapiro and S. K. Turitsyn, Optical pulse dynamics in fiber links with dispersion compensation. Optics Comm. 134 (1997) 317–329.

    Google Scholar 

  19. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform. Philadelphia: SIAM (1981) 425pp.

    Google Scholar 

  20. A. C. Newell, Solitons in Mathematics and Physics, Philadelphia: SIAM (1985) 244pp.

    Google Scholar 

  21. L. F. Mollenauer, S. G. Evangelides and J. P. Gordon, Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers. J. Lightwave Technol. 9 (1991) 362–367.

    Google Scholar 

  22. D. J. Richardson, R. P. Chamberlin, L. Dong and D. N. Payne, High quality soliton loss-compensation in 38 km dispersion-decreasing fibre. Elect. Lett. 31 (1995) 1681–1682.

    Google Scholar 

  23. A. J. Stentz, R. W. Boyd and A. F. Evans, Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber. Opt. Lett. 20 (1995) 1770–1772.

    Google Scholar 

  24. J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics. New York: Springer (1981) 558pp.

    Google Scholar 

  25. A. Hasegawa and Y. Kodama, Guiding-center soliton in fibers with periodically varying dispersion. Opt. Lett. 16 (1991) 1385–1387.

    Google Scholar 

  26. T. Kano, Normal form of nonlinear Schrödinger equation. Phys. Soc. Japan 58 (1989) 4322–4328.

    Google Scholar 

  27. Y. Kodama, Optical solitons in a monomode fiber. J. Stat. Physics 39 (1985) 597–614.

    Google Scholar 

  28. J. H. B. Nijhof, N. J. Doran, W. Forysiak and F. M. Knox, Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion. Electron. Lett. 33 (1997) 1726–1727.

    Google Scholar 

  29. V. S. Grigoryan and C. R. Menyuk, Dispersion-managed solitons at normal average dispersion. Opt. Lett. 23 (1998) 609–611.

    Google Scholar 

  30. J. N. Kutz and S. G. Evangelides, Dispersion-managed breathers with average normal dispersion. Opt. Lett. 23 (1998) 685–687.

    Google Scholar 

  31. S. K. Turitsyn and E. G. Shapiro, Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion. Opt. Lett. 23 (1998) 682–684.

    Google Scholar 

  32. T. I. Lakoba, J. Yang, D. J. Kaup and B. A. Malomed, Conditions for stationary pulse propagation in the strong dispersion management regime. Opt. Commun. 149 (1998) 366–375.

    Google Scholar 

  33. S. K. Turitsyn, N. F. Smyth and E. G. Turitsyna, Solitary waves in nonlinear dispersive systems with zero average dispersion. Phys. Rev. E 58 (1998) R44-R47.

    Google Scholar 

  34. S. K. Turitsyn, I. Gabitov, E. W. Laedke, V. K. Mezentsev, S. L. Musher, E. G. Shapiro and K. H. Spatschek, Variational approach to optical pulse propagation in dispersion compensated transmission systems. Optics Comm. 151 (1998) 117–135.

    Google Scholar 

  35. Y. Chen and H. A. Haus, Dispersion-managed solitons with net positive dispersion. Opt. Lett. 23 (1998) 1013–1015.

    Google Scholar 

  36. Y. Kodama, Nonlinear chirped RZ and NRZ pulses in optical transmission lines. In: A. Hasegawa (ed.), New Trends in Optical Soliton Transmission Systems. Dordrecht: Kluwer Academic (1998) 502pp.

    Google Scholar 

  37. T. Georges and F. Favre, Transmission systems based on dispersion managed solitons: Theory and experiment. In: A. Hasegawa (ed.), New Trends in Optical Soliton Transmission Systems. Dordrecht: Kluwer Academic (1998) 502pp.

    Google Scholar 

  38. De. Le Guen, F. Favre, M. L. Moulinard, M. Henry, G. Michaud, L. Macé, F. Devaux, B. Charbonnier and T. Georges, 200 Gbit/s 100 km-span soliton WDM transmission over 1000 km of standard fiber with dispersion compensation and pre-chirping. In: Optical Fiber Communications '97 Technical Digest. Washington: Optical Society of America (1997) p. PD17.

    Google Scholar 

  39. T. S. Yang and W. L. Kath, Analysis of enhanced-power solitons in dispersion-managed optical fibers. Opt. Lett. 22 (1997) 985–987.

    Google Scholar 

  40. V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk and A. N. Pilipetskii, Dispersion-managed soliton dynamics. Opt. Lett. 22 (1997) 1609–1611.

    Google Scholar 

  41. T. Yu, E. A. Golovchenko, A. N. Pilipetskii and C. R. Menyuk, Dispersion-managed soliton interactions in optical fibers. Opt. Lett. 22 (1997) 793–795.

    Google Scholar 

  42. T.-S. Yang, W. L. Kath and S. K. Turitsyn, Optimal dispersion maps for wavelength-division-multiplexed soliton transmission. Opt. Lett. 23 (1998) 597–599.

    Google Scholar 

  43. Y. Kodama and A. Maruta, Optimal design of dispersion management for a soliton-wavelength-division-multiplexed system, Opt. Lett. 22 (1997) 1692–1694.

    Google Scholar 

  44. Y. Kodama, Nonlinear pulse propagation in dispersion managed system, Physica D 123 (1998) 255–266.

    Google Scholar 

  45. M. Wald, I. M. Uzunov, F. Lederer and S. Wabnitz, Optimization of soliton transmissions in dispersion-managed fiber links, Opt. Comm. 145 (1998) 48–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, TS., Kath, W.L. & Turitsyn, S.K. The multiple-scale averaging and dynamics of dispersion-managed optical solitons. Journal of Engineering Mathematics 36, 163–184 (1999). https://doi.org/10.1023/A:1004554209222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004554209222

Navigation