Skip to main content
Log in

Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The transformation kinetics and microstructural development of liquid phase sintered silicon carbide ceramics (LPS-SiC) are investigated. Complete densification is achieved by pressureless and gas pressure sintering in argon and nitrogen atmospheres with Y2O3 and AlN as sintering additives. Studies of the phase transformation from β to α-SiC reveals a dependency on the initial β-content and the sintering atmosphere. The transformation rate decreases with an increasing β-content in the starting powder and in presence of nitrogen. The transformation is completely supressed for pure β-SiC starting powders when the additive system consists of 10.34 wt % Y2O3 and 2.95 wt % AlN. Materials without phase transformation showed a homogeneous microstructure with equiaxed grains, whereas microstructures with elongated grains were developed from SiC powders with a high initial α/β-ratio (> 1 : 9) when phase transformation occurs. Since liquid phase sintered silicon carbide reveals predominantly an intergranular fracture mode, the grain size and shape has a significant influence on the mechanical properties. The toughness of materials with platelet-like grains is about twice as high as for materials with equiaxed grains. Materials exhibiting elongated microstructures show also a higher bending strength after post-HIPing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Page, "Silicon Carbide: Structure and Polytypic Transformations; The Physics and Chemistry of Carbides, Nitrides and Borides" (Kluwer Academic Publishers, Dordrecht, The Netherlands 1990) pp. 197–214.

    Google Scholar 

  2. K. Motzfeld, in Proc. Int. Conf. Engineering Ceramics '92, ed. M. Haviar, Smolenice Castle, Reproprint, Bratislava, (1993), pp. 7–42.

    Google Scholar 

  3. N. W. Jepps and T. F. Page, Prog. Crystal Growth and Characterisation 7 (1983) 259.

    Google Scholar 

  4. R. Kieffer, Ber. Dtsch. Keram. Ges. 43[10] (1966) 621.

    Google Scholar 

  5. N. W. Jepps and T. F. Page, J. Am. Ceram. Soc. 64[12] (1981) C-177.

    Google Scholar 

  6. S. Prochazka, in "Ceramics for High Performance Application," J. J. Burke, A. E. Gorum, R. N. Katz (eds.) (Brook Hill Publishing Co., Chenaut Hill, Mass., 1974) pp. 239–251.

    Google Scholar 

  7. K. Suzuki, in "Silicon Carbide Ceramics-2," S. Sõmya, Y. Inomata (eds.), Ceramic Research and Development in Japan Series, Elsevier Applied Science, London and New York, (1991) 163–182.

    Google Scholar 

  8. F. F. Lange, J. Mat. Sci. 10 (1975) 314.

    Google Scholar 

  9. E. Kostic, PMI 20[6] (1988) 28.

    Google Scholar 

  10. M. Omori and H. Takei, J. Mat. Sci. 23 (1988) 3744.

    Google Scholar 

  11. J.-M. Lihrmann, P. Halary, E. Kostic and H. Schubert, in "Science of Sintering," D. P. Uskovic, H. Palmour III, R. M. Springs (eds.) (Plenum Press 1989) pp. 367–378.

  12. S. Boskovic, E. Kostic and F. Sigulinski, Science of Sintering 23[3] (1991) 1183.

    Google Scholar 

  13. W. D. G. BÖcker, R. S. Storm and K. Y. Chia, "Silicon Carbide BodiesHaving HighToughness and Fracture Resistance and Methods of Making Same," European Patent Application Nr. 90 310 329–9, 20. Sept. 1990.

  14. H. J. Kleebe and L. S. Sigl, J. Am. Ceram. Soc. 76[3] (1993) 773.

    Google Scholar 

  15. N. P. Padture, J. Am. Ceram. Soc. 77[2] (1994) 519.

    Google Scholar 

  16. S. K. Lee, J. Am. Ceram. Soc. 77[2] (1994) 519–523.

    Google Scholar 

  17. W. D. G. BÖcker and R. Hamminger, Adv. Mat. 4[3] (1992) 169.

    Google Scholar 

  18. M. Nader, Untersuchung der Kornwachstumsphänomene an flüssigphasengesinterten SiC-Keramiken und ihre Möglichkeit zur Gefügeveränderung, Ph.D. Thesis (in German), University of Stuttgart, Stuttgart (1995).

    Google Scholar 

  19. G. R. Anstis and P. Chantikul, J. Am. Ceram. Soc. 64[9] (1981) 533–538.

    Google Scholar 

  20. P. Chantikul and G. R. Anstis, J. Am. Ceram. Soc. 64[9] (1981) 539.

    Google Scholar 

  21. J. W. Christian, "Phase Transformations in Metals" (Pergamon Press, New York, 1965).

    Google Scholar 

  22. M. Kramer, M. J. Hoffmann and G. Petzow, Acta Metall. Mater. 41[10] (1993) 2939.

    Google Scholar 

  23. M. A. Mulla and V. D. Krstic, J. Mat. Sci. 29 (1994) 934.

    Google Scholar 

  24. M. J. Hoffmann and G. Petzow, Pure & Appl. Chem. 66[9] (1994) 1807.

    Google Scholar 

  25. P. F. Becher, S. L. Hwang and C. H. Hsueh, MRS Bulletin 20[2] (1995) 23.

    Google Scholar 

  26. P. F. Becher, E. Y. Sun, C. H. Hsueh, K. B. Alexander, S. L. Hwang, S. B. Waters and C. G. Westmoreland, Acta Metall. Mater. 44[10] (1996) 3881.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nader, M., Aldinger, F. & Hoffmann, M. Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. Journal of Materials Science 34, 1197–1204 (1999). https://doi.org/10.1023/A:1004552704872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004552704872

Keywords

Navigation