Skip to main content
Log in

High-Temperature Oxidation of Al–Mg Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of the atmosphere on the oxidation rates of aluminum-can alloyswas studied using thermogravimetric methods. The atmospheres included: air,Ar+1%O2, Ar+5%O2, and CO2. Temperaturesranged from 450 to 800°C. The oxidation rate was influenced by thesurface condition and by the time elapsed after specimen preparation. Increasingtemperature increased the oxidation rate of both AA 3004 and 5182. Parabolickinetics were observed for AA 3004 and linear kinetics were observed forAA 5182 at 450 and 500°C. From 550 to 800°C, parabolic behavior wasobserved for AA 5182. The reduction of free oxygen in the atmosphere reducedthe rate of oxidation. The reactivity of the atmospheres decreased in thefollowing sequence: air, Ar+5%O2, Ar+1%O2, and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Field, G. M. Scamans, and E. P. Butler, Metall. Trans. 18A, 463 (1987).

    Google Scholar 

  2. A. Bahadur, J. Mater. Sci. 22, 1941 (1987).

    Google Scholar 

  3. M. Ahmad, Metall. Trans. 18A, 681 (1987).

    Google Scholar 

  4. R. W. Bartlett, J. Electrochem. Soc. 111, 903 (1964).

    Google Scholar 

  5. W. W. Smeltzer, Temperature Range 200°-500°C, J. Electrochem. Soc. 105, 67 (1958).

    Google Scholar 

  6. G. M. Scamans and E. P. Butler, Metall. Trans. 6A, 2055 (1975).

    Google Scholar 

  7. M. H. Zayan, O. M. Jamjoom, and N. A. Razik, Oxid. Met. 34, 323 (1990).

    Google Scholar 

  8. K. Wefers, Aluminium 57, 722 (1981).

    Google Scholar 

  9. O. Salas, et al., J. Mater. Res. 6, 1964 (1991).

    Google Scholar 

  10. K. C. Vlach, et al., J. Mater. Res. 6, 1982 (1991).

    Google Scholar 

  11. S. Fox, S. H. M. Flower, and D. S. McDarmaid, Scripta Metall. 20, 71 (1986).

    Google Scholar 

  12. S. Sako, K. Ohshima, and T. Fujita, J. Phys. Soc. Japan. 59, 662 (1990).

    Google Scholar 

  13. I. A. Shibli and D. E. Davies, Powder Metall. 30, 97 (1987).

    Google Scholar 

  14. T. Rönnhult, U. Rilby, and I. Olefjord, Mater. Sci. Eng. 42, 329 (1980).

    Google Scholar 

  15. C. J. Jardin and D. Robert, Appl. Surface Sci. 35, 495 (1989).

    Google Scholar 

  16. W. Kahl and E. Fromm, Metall. Trans. 16B, 47 (1985).

    Google Scholar 

  17. C. N. Cochran and W. C. Sleppy, J. Electrochem. Soc. 108, 322 (1961).

    Google Scholar 

  18. C. Lea and C. Molinari, J. Mater. Sci. 19, 2336 (1984).

    Google Scholar 

  19. C. N. Cochran, D. L. Belitskus, and D. L. Kinosz, Metall. Trans. 8B, 323 (1977).

    Google Scholar 

  20. P. E. Blackburn and E. A. Gulbransen, J. Electrochem. Soc. 107, 944 (1960).

    Google Scholar 

  21. M. Drouzy and M. Richard, Fonderie 332, 121 (1974).

    Google Scholar 

  22. M. Drouzy and M. D. Fontaine, Rev. Metall. p. 775 (1970).

  23. M. J. Dignam, J. Electrochem. Soc. 109, 184 (1962).

    Google Scholar 

  24. M. J. Dignam, W. R. Fawcett, and H. Böhni, J. Electrochem. Soc. 113(17), 656 (1966).

    Google Scholar 

  25. I. M. Ritchie, J. V. Sanders, and P. L. Weickhardt, Oxid. Met. 3, 91 (1971).

    Google Scholar 

  26. R. A. Hine and R. D. Guminski, J. Insti. Met. 89, 417 (1960-1961).

    Google Scholar 

  27. R. Grauer and P. Schmoker, cited in D. J. Field et al., Ref. 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenório, J.A.S., Espinosa, D.C.R. High-Temperature Oxidation of Al–Mg Alloys. Oxidation of Metals 53, 361–373 (2000). https://doi.org/10.1023/A:1004549522648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004549522648

Navigation