Skip to main content
Log in

Morphology and growth mechanism of silicon carbide chemical vapor deposited at low temperatures and normal atmosphere

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the method of phenomenology, a supersaturation–condensation–fusion (SCF) mechanism is proposed to describe the growth of chemical vapor deposition silicon carbide under normal atmosphere. The structure has been characterized by scanning electron microscopy and transmission electron microscopy. Morphology characterization of deposited crystallites and silicon carbide aggregates have been explained in terms of SCF mechanism; Raman spectra analysis indicated that the major chemical bonds of deposit were Si–C and –C=C–. Auger spectra analysis revealed that there were Si, C, S, Cl, and O on the surface of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jamet and P. J. Lmicq, in "High Temperature Ceramics Matrix Composites," edited by R. Naslain (Bordeaux:Woodhead; 1993) p. 735.

  2. J. K. Strife and J. E. Shechan, Am. Ceram. Soc. Bull. 67 (1988) 367.

    Google Scholar 

  3. R. Naslain, in "Ceramic Matrix Composites," edited by R.Warren (London and New York: Champan & Hall, 1992) p. 199.

    Google Scholar 

  4. D. P. Stinton, T. M. Besmann and R. A. Lowden, Am. Ceram. Soc. Bull. 67 (1988) 350.

    Google Scholar 

  5. T. M. Besmann, R. A. Lowden and D. P. Stintion, in "High Temperature Ceramics Matrix Composites," edited by R. Naslain (Bordeaux: Woodhead, 1993) p. 215.

  6. A. G. Suleyman, in "Proceedings of the 11th International Conference on Chemical Vapor Deposition," edited by K. E. Spear (American Electrochemical Society, Pennington, New Jersey, 1990) p. 1.

  7. D. P. Stinton, W. J. Lackey, R. J. Lauf and T. M. Besmann, Ceram. Eng. Sci. Proc. 5 (1984) 668.

    Google Scholar 

  8. K. Minato and K. Fukuda, J. Mater. Sci. 23 (1988) 699.

    Google Scholar 

  9. D. Lespiaux, F. Langlasis and R. Naslain, ibid. 30 (1995) 1550.

    Google Scholar 

  10. W. J. Lackey, J. A. Hanigofsky, G. B. Freeman, R. D. Hardin and A. Prasad, J. Am. Ceram. Soc. 78 (1995) 1564.

    Google Scholar 

  11. D. P. Stinton, A. J. Caputo and R. A. Lowden, Am. Ceram. Soc. Bull. 65 (1986) 347.

    Google Scholar 

  12. T. M. Besmann, B. W. Sheldon, R. A. Lowden and D. P. Stinton, Science 235 (1991) 1104.

    Google Scholar 

  13. F. Sibieude and G. Benezech, J. Mater. Sci. 22 (1988) 1623.

    Google Scholar 

  14. C. W. Zhu, G. Y. Zhao, V. Revankar and V. Hlavacek, ibid. 28 (1993) 659.

    Google Scholar 

  15. H. W. Emmons, "Fundamentals of Gas Dynamics (Section F)" (Princeton, Princeton University Press, 1958) p. 3.

    Google Scholar 

  16. E. J. Givargiaov, "Current Topics in Materials Science" (New York: North-Holland, 1978) p. 91.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Cheng, L., Zhang, L. et al. Morphology and growth mechanism of silicon carbide chemical vapor deposited at low temperatures and normal atmosphere. Journal of Materials Science 34, 551–555 (1999). https://doi.org/10.1023/A:1004546712932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004546712932

Keywords

Navigation