Skip to main content
Log in

Effect of Edges and Corners on Stresses in Thermally Grown Alumina Scales

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Residual stress near edges and corners of thermally grown alumina scaleswere investigated. In this study, an edge is the intersection of twoorthogonal flat surfaces and a corner is the intersection of three suchsurfaces. Microfluorescence measurements, performed on alloys withcomposition Fe–28Al–5Cr (at.%, bal. Fe) oxidized at 900°C,showed a large (>50%) reduction in hydrostatic stress in the vicinity ofedges and corners. Surprisingly, significant stress reduction persists outto distances twenty to fifty times the scale thickness from theedge. Finite-element analysis calculations confirm the experimental resultsand provide a considerably more detailed picture of the stress distributionand its components and show that much of the observed stress reduction nearan edge, is due to plastic deformation of the underlying metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. J. Quadakkers and M. J. Bennett, Mater. Sci. Technol. 10, 126 (1994).

    Google Scholar 

  2. H. J. Grabke, J. F. Norton, and F. G. Casteels, in High Temperature Alloys for Gas Turbines and Other Applications, Vol. I, W. Betz, ed. (Reidel, Dordrecht, 1986), p. 254.

    Google Scholar 

  3. J. Stringer, Corros. Sci. 10, 513 (1970).

    Google Scholar 

  4. R. L. Williamson, J. K. Wright, and R. M. Cannon, Proc. 190th ECS Fall Meet. San Antonio, TX 1996. Vol. 96-26. Fundamental Aspects of High Temperature Corrosion, D. A. Shores, R. Rapp, and P. Y. Hou, eds. (Electrochem. Soc., Pennington, NJ 1997), p. 16.

    Google Scholar 

  5. J. K. Wright, R. L. Williamson, and R. M. Cannon, Mater. Sci. Eng. A238, 411 (1997).

    Google Scholar 

  6. A. Jayaraman. Rev. Mod. Phys. 55, 65 (1983).

    Google Scholar 

  7. K. Natesan, B. W. Veal, M. Grimsditch, D. Renusch, and A. P. Paulikas, Proc. 9th Annu. Conf. Fossil Energy Mater., May 16-18 (1995), Oak Ridge, TN, CONF-9505204, ORNL/FMP-95/1 (National Technical Information Service, U.S. Dept. of Commerce, 1995), p. 225.

  8. K. Natesan, C. Richier, B. W. Veal, M. Grimsditch, D. Renusch, and A. P. Paulikas, Argonne Nat. Lab. Rep. ANL/FE-95/02 (1995).

  9. K. Natesan, K. L. Klug, D. Renusch, M. Grimsditch, and B. W. Veal, Proc. 10th Annu. Conf. Fossil Energy Mater., Knoxville, TN, May 14-16 (National Technical Information Service, U.S. Dept. of Commerce, 1996).

  10. D. Renusch, B. W. Veal, I. Koshelev, K. Natesan, M. Grimsditch, and P. Y. Hou, Proc. Spring Meet. Mater. Res. Soc., San Francisco, CA, 1996, Vol. 436, Thin Films: Stresses and Mechanical Properties VI, p. 511; Proc. 190th ECS Fall Meet. San Antonio, TX, 1996. Vol. 96-26, Fundamental Aspects of High Temperature Corrosion, D. A. Shores, R. Rapp, and P. Y. Hou, eds. (Electrochem. Soc., Pennington, NJ, 1997), p. 62.

    Google Scholar 

  11. D. Renusch, M. Grimsditch, I. Koshelev, and B. W. Veal, Oxid. Met. 48, 469 (1997).

    Google Scholar 

  12. D. M. Lipkin, D. R. Clarke, M. Hollatz, M. Bobeth, and W. Pompe, Corros. Sci. 39, 231 (1997).

    Google Scholar 

  13. D. M. Lipkin, H. Schaffer, F. Adar, and D. R. Clarke, Appl. Phys. Lett. 70, 2550 (1997).

    Google Scholar 

  14. C. Mennicke, E. Schumann, C. Ulrich, and M. Ruhle, Mater. Sci. Forum, Vol. 251-254, p. 389 (1997).

    Google Scholar 

  15. D. M. Lipkin and D. R. Clarke, Oxid. Met. 45, 267 (1996).

    Google Scholar 

  16. R. J. Christennsen, D. M. Lipkin, and D. R. Clarke, Acta Mater. 44, 3813 (1996).

    Google Scholar 

  17. Q. Wen, D. R. Clarke, N. Yu, and M. Nastasi, Appl. Phys. Lett. 6, 293 (1995).

    Google Scholar 

  18. J. He and D. R. Clarke, J. Am. Ceram. Soc. 78, 1347 (1995).

    Google Scholar 

  19. Qing Ma and D. R. Clarke, J. Am. Ceram. Soc. 77, 298 (1994).

    Google Scholar 

  20. Qing Ma and D. R. Clarke, J. Am. Ceram. Soc. 76, 1433 (1993).

    Google Scholar 

  21. Qing Ma and D. R. Clarke, Acta Metall. Mater. 41, 1811 (1993).

    Google Scholar 

  22. Qing Ma, W. Pompe, J. D. French and D. R. Clarke, Acta Metall. Mater. 42, 1673 (1994).

    Google Scholar 

  23. S. E. Molis and D. R. Clarke, J. Am. Ceram. Soc. 73, 3189 (1990).

    Google Scholar 

  24. Qing Ma and D. R. Clarke, The American Society of Mechanical Engineers, AMD-Vol. 181, Book No. H00888 (1993).

  25. J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou, and R. M. Cannon, Mater. Sci. Eng. 262, 246 (1999).

    Google Scholar 

  26. X. Y. Gong and D. R. Clarke, Oxid. Met. 50, 355 (1998).

    Google Scholar 

  27. R. Prescott and M. J. Graham, Oxid. Met. 38, 233 (1992).

    Google Scholar 

  28. American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963), p. 6-34.

  29. A. A. Kaplyanskii, A. K. Przhevuskii, and R. B. Rozenbaum, Sov. Phys. Solid State 10, 1864 (1969).

    Google Scholar 

  30. T. Yada and H. Koguchi, JSME Int. J. 34, 163 (1991).

    Google Scholar 

  31. J. J. Barns, J. G. Goedjen, and D. A. Shores, Oxid. Met. 32, 449 (1989).

    Google Scholar 

  32. V. Sergo, D. M. Lipkin, G. De Portu, and D. R. Clarke, J. Am. Ceram. Soc. 80, 1633 (1997).

    Google Scholar 

  33. H. Kobayashi, Y. Arai, H. Nakamura, and T. Sato, Mater. Sci. Eng. A143, (1991).

  34. B. E. Sheets and K. Kokini, Compos. Mater. Tech. ASME 37, 257 (1991).

    Google Scholar 

  35. H. E. Evans, G. P. Mitchell, R. C. Lobb, and D. R. J. Owen, Proc. R. Soc. London A440, (1993).

  36. ABAQUS computer code, Hibbitt, Karlsson and Sorensen, Inc., Providence, RI, 1996.

  37. V. K. Tolpygo, J. R. Dryden, and D. R. Clarke, Acta Mater. 46, 927 (1998).

    Google Scholar 

  38. W. K. Lackey, D. P. Stinton, G. A. Carny, L. L. Fehrenbacher, and A. C. Schaffhauser, Oak Ridge Nat. Lab. Rep. ORNL/TM-8959 (1984).

  39. P. Morgand, P. Mouturat, and G. Sainfort, Acta Metall. 16, 867 (1968).

    Google Scholar 

  40. K. B. Alexander, K. PrÜssner, P. Y. Hou, and P. F. Tortorelli, in Thermophysical Properties of Matter, Vol. 13: Thermal Expansion in Nonmetallic Solids, Y. S. Touloukian, R. K. Kirby, R. E. Taylor and T. Y. Lee, eds. (Plenum, NY, 1997).

    Google Scholar 

  41. W. D. Porter and P. J. Maziasz. Scripta Metall. 29, 1043 (1993).

    Google Scholar 

  42. J. R. Knibloe, R. N. Wright, V. K. Sikka, R. H. Baldwin, and C. R. Howell, Mater. Sci. Eng. A153 382 (1992).

    Google Scholar 

  43. R. Hill, Proc. Phys. Soc. London A65, 349 (1952).

    Google Scholar 

  44. Y. Yourdshahyan, C. Ruberto, L. Bengtsson, and B. I. Lundqvist, Phys. Rev. B56, 8553 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renusch, D., Muralidharan, G., Uran, S. et al. Effect of Edges and Corners on Stresses in Thermally Grown Alumina Scales. Oxidation of Metals 53, 171–191 (2000). https://doi.org/10.1023/A:1004543032584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004543032584

Navigation