Skip to main content
Log in

The Influence of the Alloy Microstructure on the Oxidation Behavior of Ti–46Al–1Cr–0.2Si Alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of microstructure of the two-phase alloyTi–46Al–1Cr–0.2Si on the oxidation behavior in air between600 and 900°C was studied. The oxidation rate, type of scale, and scalespallation resistance were strongly affected by the type of microstructure,i.e., lamellar in as-cast material and duplex after extrusion at1300°C. The oxidation rate was affected by the size and distribution ofthe α2-Ti3Al phase, being faster for the extrudedmaterial with coarse α2-Ti3Al. The type of oxide scaledetermines the spalling resistance. Cast material developed a uniform scalethat spalled off after short exposure times at 800 and 900°C when a criticalthickness was reached. The extruded material presented a heterogeneous scalewith predominant thick regions formed on γ-TiAl-α2-Ti3Algrains and thin scale regions formed on γ-TiAl grains. Thistype of scale could permit an easier relaxation in the matrix of stressesgenerated by both thermal-expansion mismatch between scale and alloy andoxide growth, resulting in a higher spallation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Appel and R. Wagner, Mater. Sci. Eng. R22, 187 (1998).

    Google Scholar 

  2. A. Rahmel, W. J. Quadakkers, and M. ScÜhtze, Mater. Corros. 46, 271 (1995).

    Google Scholar 

  3. S. Taniguchi and T. Shibata, Intermetallics 4, S85 (1996).

    Google Scholar 

  4. S. Taniguchi, Mater. Corros. 48, 1 (1997).

    Google Scholar 

  5. D. W. McKee and S. C. Huang, Corros. Sci. 33, 1899 (1992).

    Google Scholar 

  6. Y. Shida and H. Anada, Corros. Sci. 35, 945 (1993).

    Google Scholar 

  7. W. Smarsly and L. Singheiser, in Materials for Advanced Power Engineering, Part II, D. Coutsuradis et al., eds. (Kluwer Academic Publishers, Netherlands, 1994), p. 1731.

    Google Scholar 

  8. H. Nickel, N. Zheng, A. Elschner, and W. Quadakkers, Mikrochim. Acta 119, 23 (1995).

    Google Scholar 

  9. S. Taniguchi, T. Shibata, and S. Sakon, Mater. Sci. Eng. A198, 85 (1995).

    Google Scholar 

  10. Y. Shida and H. Anada, Oxid. Met. 45, 197 (1996).

    Google Scholar 

  11. M. F. Stroosnijder, N. Zheng, W. Quadakkers, R. Hofman, A. Gil, and F. Lanza, Oxid. Met. 46, 19 (1996).

    Google Scholar 

  12. M. F. Stroosnijder, H. J. Schmutzler, V. A. C. Haanappel, and J. D. SunderkÖtter, Mater. Corros. 48, 40 (1997).

    Google Scholar 

  13. M. SchÜtze and M. Hald, Mater. Sci. Eng. A239-240, 847 (1997).

    Google Scholar 

  14. M. Hald and M. SchÜtze, Mater. Sci. Forum 251-254, 179 (1997).

    Google Scholar 

  15. S. A. Kekare and P. B. Aswath, J. Mater. Sci. 32, 2485 (1997).

    Google Scholar 

  16. S. Taniguchi, H. Juso, and T. Shibata, Oxid. Met. 49, 325 (1998).

    Google Scholar 

  17. V. A. C. Haanappel and M. F. Stroosnijder, Surf. Coat. Technol. 105, 147 (1998).

    Google Scholar 

  18. S. Taniguchi, K. Uesaki, Y. C. Zhu, H. X. Zhang, and T. Shibata, Mater. Sci. Eng. A249, 223 (1998).

    Google Scholar 

  19. S. Taniguchi, T. Shibata, and S. Itoh, Mater. Trans. JIM 32, 151 (1991).

    Google Scholar 

  20. S. Becker, A. Rahmel, M. Schorr, and M. SchÜtze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  21. U. Figge, A. Elschner, N. Zheng, H. Schuster, and W. J. Quadakkers, Fresenius J. Anal. Chem. 346, 75 (1993).

    Google Scholar 

  22. C. Lang and M. SchÜtze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  23. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 477 (1995).

    Google Scholar 

  24. F. Dettenwanger, E. Schumann, J. Rakowski, G.H. Meier, and M. RÜhle, Mater. Corros. 48, 23 (1997).

    Google Scholar 

  25. V. Shemet, H. Hoven, and W. J. Quadakkers, Intermetallics 5, 311 (1997).

    Google Scholar 

  26. C. Lang and M. SchÜtze, Mater. Corros. 48, 13 (1997).

    Google Scholar 

  27. W. J. Quadakkers, P. Schaaf, N. Zheng, A. Gil, and E. Wallura, Mater. Corros. 48, 28 (1997).

    Google Scholar 

  28. F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. RÜhle, Microscopy of Oxidation 3, S. B. Newcomb and J. A. Little, eds. (The Institute of Materials, London, 1997), p. 277.

    Google Scholar 

  29. W. J. Quadakkers, N. Zheng, A. Gil, E. Wallura, and H. Hoven, Mater. Sci. Forum 251-254, 187 (1997).

    Google Scholar 

  30. A. Gil, E. Wallura, H. GrÜbmeier, and W. J. Quadakkers, J. Mater. Sci. 28, 5869 (1993).

    Google Scholar 

  31. A. Gil, H. Hoven, E. Wallura, and W. J. Quadakkers, Corros. Sci. 34, 615 (1993).

    Google Scholar 

  32. A. I. P. Nwobu, H. M. Flower, and D. R. F. West, Microscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (The Institute of Materials, London, 1993), p. 423.

    Google Scholar 

  33. M. P. Brady, J. L. Smialek, D. L. Humphrey, and J. Smith, Acta Mater. 45, 2371 (1997).

    Google Scholar 

  34. M. P. Brady, J. L. Smialek, E. D. Verink, Jr., D. T. Hoelzer, and R. Stone, Mater. Manuf. Processes 11, 635 (1996).

    Google Scholar 

  35. M. F. Stroosnijder, V. A. C. Haanappel, and H. Clemens, Mater. Sci. Eng. A239-240, 842 (1997).

    Google Scholar 

  36. V. A. C. Haanappel, R. Hofman, J. D. SunderkÖtter, W. Glatz, H. Clemens, and M. F. Stroosnijder, Oxid. Met. 48, 263 (1997).

    Google Scholar 

  37. V. A. C. Haanappel, W. Glatz, H. Clemens, and M. F. Stroosnijder, Mater. High Temp. 14, 19 (1997).

    Google Scholar 

  38. A. Menand, A. Huguet, and A.-Nerac-Partaix, Acta Mater. 44, 4729 (1996).

    Google Scholar 

  39. J. Stringer, Acta Metall. 8, 758 (1960).

    Google Scholar 

  40. P. Kofstad, in High Temperature Corrosion (Elsevier Applied Science, London, 1988), Chap. 9, p. 292.

    Google Scholar 

  41. T. A. Wallace, R. K. Clark, and K. E. Wiedemann, Oxid. Met. 42, 451 (1994).

    Google Scholar 

  42. R. U. Vaidya, Y. S. Park, J. Zhe, G. T. Gray, III, and D. P. Butt, Oxid. Met. 50, 215 (1998).

    Google Scholar 

  43. J. Unnam, R.N. Shenoy, and R.K. Clark, Oxid. Met. 26, 231 (1986).

    Google Scholar 

  44. J. C. Smeggil and M. D. McConnell, Oxid. Met. 8, 309 (1974).

    Google Scholar 

  45. J. C. Smeggil, Oxid. Met. 9, 31 (1975).

    Google Scholar 

  46. M. J. Bennett, H. Romary, and J. B. Price, Proc. 1st Intern. Conf. Heat-Resistant Mater., Fontana, Wisconsin, September 23-26, K. Natesan and D. J. Tillack, eds. (ASM International, Materials Park, Ohio, 1991), p. 95.

    Google Scholar 

  47. R. A. Versaci, D. Clemens, W. J. Quadakkers, and R. Hussey, Solid State Ionics 59, 235 (1993).

    Google Scholar 

  48. G. H. Meier, F. S. Pettit, and S. Hu, J. Phys. IV 3, 395 (1993).

    Google Scholar 

  49. M. Groβ, V. Kolarik, and A. Rahmel, Oxid. Met. 48, 171 (1997).

    Google Scholar 

  50. F. Dettenwanger, E. Schumann, M. RÜhle, J. Rakowski, and G. H. Meier, Oxid. Met. 50, 269 (1998).

    Google Scholar 

  51. W. E. Dowling, Jr. and W. T. Donlon, Scripta. Metall. Mater. 27, 1663 (1992).

    Google Scholar 

  52. R. W. Beye and R. Gronsky, Acta Metall. Mater. 42, 1373 (1994).

    Google Scholar 

  53. N. Zheng, W. Fischer, H. GrÜbmeier, V. Shemet, and W. J. Quadakkers, Scripta. Metall. Mater. 33, 47 (1995).

    Google Scholar 

  54. S. Becker, M. SchÜtze, and A. Rahmel, Oxid. Met. 39, 93 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, P., Jiménez, J.A., Frommeyer, G. et al. The Influence of the Alloy Microstructure on the Oxidation Behavior of Ti–46Al–1Cr–0.2Si Alloy. Oxidation of Metals 53, 99–124 (2000). https://doi.org/10.1023/A:1004534830767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004534830767

Navigation