Skip to main content
Log in

Atomistic simulation of grain boundary sliding and migration

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interatomic potentials using Embedded Atom Method (EAM) are used in conjunction with molecular statics and dynamics calculations to study the sliding and migration of [1 1 0] symmetric tilt grain boundaries (STGB) in aluminum, under both applied displacement and force conditions. For equilibrium grain boundaries (without applied displacements and forces), three low energy configurations (corresponding to three twin structures) are found in the [1 1 0] STGB structures when grain boundary energies at 0 K are computed as a function of grain misorientation angle. “Pure” grain boundary sliding (GBS) without migration is simulated by applying external displacement. When forces are applied, the energy barriers are reduced consequent to the fact that grain boundary sliding of STGB is always coupled with migration. The propensity for “pure” GBS is evaluated by computing the energy associated with incremental equilibrium configurations during the sliding process and compared to the case when sliding is accompanied by migration. The magnitude of the energy barriers is found to be much higher in “pure” GBS than when migration accompanies sliding. Relations between the applied force, internal stress field, and displacement field are established and the role of grain boundary structure on the deformation process are examined. It is found that the GBS displacement is proportional to applied force, GB energy, and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Mcnelly and M. E. Mcmahon, Mater. Trans. A. 27 (1996) 2252.

    Google Scholar 

  2. D. Wolf, Acta Metall. 32 (1984) 245.

    Google Scholar 

  3. Y. Oh and V. Vitek, Acta Metall. 34 (1986) 1491.

    Google Scholar 

  4. D. Wolf, Acta Metall. 32 (1984) 245.

    Google Scholar 

  5. G. Hasson, J.-Y. Boos, I. Herbeuval, M. BISCONDI and C. GOUX, Surf. Sci. 31 (1972) 115.

    Google Scholar 

  6. G. J. Wang, A. P. Sutton and V. Vitek, Acta metall. 32 (1994) 1093.

    Google Scholar 

  7. U. Dahmen, C. J. D. Hetherington, M. A. O'keefe, K. H. Westmacott, M. J. Mills, M. S. Daw and V. Vitek, Phil. Mag. Letters 62 (1990) 327.

    Google Scholar 

  8. A. P. Sutton and R. W. Balluffi, Acta Metall. 35 (1987) 2177.

    Google Scholar 

  9. J. Wang and V. Vitek, Acta Metall. 34 (1986) 951.

    Google Scholar 

  10. A. P. Sutton and R. W. Balluffi, "Interface in Crystalline Materials" (Oxford University Press, 1995).

  11. M. S. Daw, S. F. Foiles and M. I. Baskes, Mater. Sci. Reports 9 (1993) 251.

    Google Scholar 

  12. P. Dang and M. Grujicic, Mater. Sci. and Eng. 4 (1996) 123.

    Google Scholar 

  13. D. Wolf, J. Appl. Phys. 68 (1990) 3221.

    Google Scholar 

  14. Idem, ibid. 69 (1990) 185.

  15. M. J. Mills, Mater. Sci. Eng. A166 (1993) 35.

    Google Scholar 

  16. J. M. Rickman, S. R. Fillet, D. Wolf, D. L. Woodraska and S. Yip, J. Mater. Res. 6 (1991) 2291.

    Google Scholar 

  17. G. H. Bishop, JR, R. J. Harrison, T. Kwok and S. Yip, J. Appl. Phys. 53 (1982) 5609.

    Google Scholar 

  18. Idem ibid. 53 (1982) 5596.

  19. C. Molteni, G. P. Francis, M. C. Payne and V. Heine, Mater. Sci. Eng. B37 (1996) 121.

    Google Scholar 

  20. D. J. Oh and R. A. Johnson, "Atomistic Simulations of Material: Beyond Pair Potentials," edited by V. Vitek and D. J. Srolovitz (Plenum Press, 1989, p. 223).

  21. S. F. Foiles, private communication, 1996.

  22. G. Palumbo, E. M. Lehockey and P. Lin, JOM 50 (1998) 40.

    Google Scholar 

  23. C. P. Chen, D. J. Srolovitz and A. F. Volter, J. Mater. Res. 4 (1989) 62.

    Google Scholar 

  24. A. Otsuki and M. Mizuno, Proceeding Symosiam on Grain Boundary Structure and Related Phenomena (Thans. Japan Inst. Metals, Suppl. 27 1986) p. 789.

    Google Scholar 

  25. M. F. Ashby, Surf. Sci. 31 (1972) 498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, N., Dang, P. Atomistic simulation of grain boundary sliding and migration. Journal of Materials Science 34, 655–666 (1999). https://doi.org/10.1023/A:1004531706998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004531706998

Keywords

Navigation