Skip to main content
Log in

Cell nucleation in solid-state polymeric foams: evidence of a triaxial tensile failure mechanism

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanism for nucleation phenomenon in solid-state microcellular foams is identified as a solid-state failure process. This process originates at internal flaws within the gas-polymer matrix, where it is induced by the presence of a state of hydrostatic tensile stress within the polymer matrix. The hydrostatic tensile stress is caused by the presence of the saturating gas within the polymer. The nucleation phenomenon is thermally activated at the effective glass transition temperature of the gas-polymer mixture. At this critical temperature, the hydrostatic tensile stress within the gas-polymer mixture is sufficient to cause the polymer matrix to fail, thereby creating a foam cell nucleus. In general, the nucleation sites are observed to be flat, approximately circular, fracture sites. After the appearance of the initial fracture, gas diffuses from the gas-polymer matrix into the fracture. The fracture seam inflates during the growth process, in which growth begins with the appearance of a disk shaped fracture and concludes with an approximately spherical cell. The results and conclusions presented herein suggest a new avenue to explain the cell nucleation phenomena observed in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Barlow and W. E. Langlois, IBM J. Res. and Dev. 6 (3) (1962) p. 329–337.

    Google Scholar 

  2. J. E. Martini, The production and analysis of microcellular foam, Department of Mechanical Engineering, MIT, 1981.

  3. J. Martini, F. A. Waldman and N. P. Suh, The production and analysis of microcellular thermoplastic foams, SPEANTEC Technical Papers, 1982. Vol. XXVIII: pp. 674–676.

    Google Scholar 

  4. J. E. Martini-vvedensky, N. P. Suh and F. A. Waldman, Microcellular closed cell foams and their method of manufacture, United States, 1984.

  5. J. S. Colton, The nucleation of microcellular thermoplastic foam, Massachusetts Institute of Technology, Cambridge, 1985.

  6. J. Colton and N. P. Suh, Polym. Eng. Sci. 27 (7) (1987) 500–503.

    Google Scholar 

  7. Idbm, ibid. pp. 493–499.

  8. Idbm, ibid. pp. 485–492.

  9. N. S. Ramesh, et al. An experimental study on the nucleation of microcellular foams in high impact polystyrene, in SPE ANTEC 92 (Detroit MI, 1992).

  10. J. A. Kweeder, et al., The nucleation of microcellular polystyrene foam, SPE Technical Papers (1991) Vol. 37, p. 1398.

    Google Scholar 

  11. M. E. Adams and G. A. Campbell, Polym. Eng. Sci. 31 (18) (1991) 1337–1343.

    Google Scholar 

  12. N. S. Ramesh, D. H. Rasmussen and G. A. Campbell. The nucleation of microcellular foams in polystyrene containing low glass transition particles, in SPE ANTEC 93 (New Orleans, 1993).

  13. Idem, Polym. Eng. Sci. 34 (22) (1994) 1685–1697.

    Google Scholar 

  14. Idem, ibid. pp. 1685–1697.

  15. V. Kumar, Process synthesis for manufacturing microcellular thermoplastic parts:Acase study in axiomatic design, Massachusetts Institute of Technology, Cambridge, 1988.

  16. A. K. Doolittle, J. Polym. Sci. 2 (2) (1947) 121–141.

    Google Scholar 

  17. J. K. Sears and J. R. Darby, "The technology of plasticizers" (John Wiley & Sons, New York, 1982).

    Google Scholar 

  18. V. L. Simril, J. Polym. Sci. 2 (2) (1947) 142–156.

    Google Scholar 

  19. R. F. Boyer and R. S. Spencer, ibid. pp. 157–177.

  20. T. S. Chow, Macromolecules 13 (1980) 362–364.

    Google Scholar 

  21. K. J. Beirnes and C. M. Burns, J. Appl. Polym. Sci. 31 (1986) 2561–2567.

    Google Scholar 

  22. S. Kalachandra and D. T. Turner, J. Polym. Sci.: Part B, Polym. Phys. 25 (1987) 1971–1979.

    Google Scholar 

  23. W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 16 (1978) 1947–1963.

    Google Scholar 

  24. M. D. Sefcik, J. Polym. Sci.: Part B, Polym. Phys. 24 (1986) 957–971.

    Google Scholar 

  25. Y. Kamiya, et al., J. Polym. Sci.: Part B, Polym. Phys. 24 (1986) 535–547.

    Google Scholar 

  26. Idem, ibid. pp. 1525–1539

  27. Idem, ibid. pp. 159–177.

  28. G. K. Fleming and W. J. Koros, Macromolecules 19 (1986) 2285–2291.

    Google Scholar 

  29. M. D. Sefcik, J. Polym. Sci.: Part B, Polym. Phys. 24 (1986) 935–956.

    Google Scholar 

  30. R. G. Wissinger and M. E. Paulaitis, ibid. 25 (1987) 2497–2510.

    Google Scholar 

  31. G. K. Fleming and W. J. Koros, ibid. 28 (1990) 1137–1152.

    Google Scholar 

  32. S. M. Jordan, G.K. Fleming and W. J. Koros, ibid. pp. 2305–2327.

  33. B. J. Briscoe and S. Zakaria, J. Mater. Sci. 25 (1990) 3017–3023.

    Google Scholar 

  34. A. N. Gent and P. B. Lindley, Proc. Royal Soc. London, Series A. Mathematical and Physical Sciences 249 (1959) 195–205.

    Google Scholar 

  35. M. L. Williams and R. A. Schapery, Int. J. Fracture Mech. 1 (1) (1965) 64–72.

    Google Scholar 

  36. G. H. Lindsey, J. Appl. Phys. 38 (12) (1967) 4843–4852.

    Google Scholar 

  37. A. N. Gent and D. A. Tompkins, J. Polym. Sci.: Part A-2 7 (1969) 1483–1488.

    Google Scholar 

  38. A. N. Gent and D. A. Tompkins, J. Appl. Phys. 40 (6) (1969) 2520–2525.

    Google Scholar 

  39. B. J. Briscoe and S. Zakaria, Polymer 31 (1990) 440–447.

    Google Scholar 

  40. B. J. Briscoe and S. Zakaria, J.Polym. Sci.:Part B,Polym. Phys. 30 (1990) 959–969.

    Google Scholar 

  41. A. N. Gent and Y. C. Hwang, J. Mater. Sci. 25 (1990) 4981–4986.

    Google Scholar 

  42. A. N. Gent and C. Wang, ibid. 26 (1991) 3392–3395.

    Google Scholar 

  43. M. R. Holl, Dynamic analysis, measurement, and control of cell growth in solid state polymeric foams, University of Washington, 1995.

  44. E. E. Underwood, "Quantitative Stereology," (Addison-Wesley, Reading Massachusetts, 1970).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holl, M.R., Kumar, V., Garbini, J.L. et al. Cell nucleation in solid-state polymeric foams: evidence of a triaxial tensile failure mechanism. Journal of Materials Science 34, 637–644 (1999). https://doi.org/10.1023/A:1004527603363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004527603363

Keywords

Navigation