Skip to main content
Log in

Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This study aims at assessing the suitability of Hylocomium splendens as a biomonitor for heavy metal deposition and contributing to the understanding of mineral nutrient uptake mechanisms in forest floor bryophytes. Concentrations of Ca, Mg, K, Cd, Cu and Pb were determined in Hylocomium splendens segment samples collected at 196 permanent vegetation plots from eleven monitoring areas, where the vegetation-environment relationships had previously been thoroughly studied. Element concentrations in Hylocomium splendens were related to environmentally interpreted vegetational gradients, cover of understorey vascular plants, and local environmental conditions, including element concentrations in humus, soil moisture and tree impact, by means of correlation analyses performed separately for each area. A combined test was performed for each Hylocomium splendens variable over all eleven areas, showing that concentrations of Ca, Cd and Mg in Hylocomium splendens were strongly correlated with the main vegetational gradient and with pH and concentrations of Ca and total N in humus, indicating considerable uptake of nutrients by Hylocomium splendens from water that has been in contact with humus. These relationships were less strong in the climatically most humid areas. Concentrations of all elements were more or less strongly correlated with one or more variables reflecting tree influence (tree density as measured by basal area and two crown influence indices) reflecting that throughfall precipitation, modified by leaching from the canopy, partly accounts for input of elements, especially for K, Cd and Mg. Only concentrations of Pb, Cd and Cu were significantly correlated, negatively, with vascular plant cover, indicating that supply of elements by leaching from understorey vascular plant foliage is negligible. The concentration of Cu in Hylocomium splendens was only weakly correlated, and the concentration of Pb unrelated to vegetational gradients and most environmental conditions. The results indicate that atmospheric deposition accounts for most of the input of Pb, confirming the suitability of Hylocomium splendens as a biomonitor for this element. For elements such as Cd local environmental conditions should be carefully considered, even when data from regional moss surveys are to be interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Baadsvik K 1974 Jordanalyser. Noen utvalgte metoder for fysikalske og kjemiske jordanalyser. Univ. Trondheim, Trondheim.

    Google Scholar 

  • Bates J W 1987 Nutrient retention by Pseudoscleropodium purum and its relation to growth. J. Bryol. 14, 59–70.

    Google Scholar 

  • Bates J W 1992 Mineral nutrient acquisition and retention by bryophytes. J. Bryol. 17, 223–240.

    Google Scholar 

  • Bates J W and Farmer A M 1990 An experimental study of calcium acquisition and its effects on the calcifuge moss Pleurozium schreberi. Ann. Bot. 65, 87–96.

    Google Scholar 

  • Beier C, Hansen K and Gundersen P 1993 Spatial variability of throughfall fluxes in a spruce forest. Environm. Pollution 81, 257–267.

    Article  CAS  Google Scholar 

  • Berg T, Røyset O and Steinnes E 1995 Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos. Environm. 29, 353–360.

    Article  CAS  Google Scholar 

  • Berg T and Steinnes E 1997 Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitor of heavy metal deposition: from relative to absolute depoition values. Environm. Pollution 98, 61–71.

    Article  CAS  Google Scholar 

  • Bergkvist B 1987 Leaching of metals from forest soils as influenced by tree species and management. For. Ecol. Mgmt. 22, 29–56.

    Article  CAS  Google Scholar 

  • ter Braak C J F and Prentice I C 1988 A theory of gradient analysis. Adv. ecol. Res. 18, 271–317.

    Article  Google Scholar 

  • Brown D H 1982 Mineral nutrition. In Bryophyte ecology. Ed. A J E Smith. pp 384–444. Chapman and Hall, London.

    Google Scholar 

  • Brown D H and Bates J W 1990 Bryophytes and nutrient cycling. Bot. J. Linn. Soc. 104, 129–147.

    Google Scholar 

  • Brown D H and BrNumelis G 1996 A biomonitoring method using the cellular distribution of metals in moss. Sci. tot. Environm. 187, 153–161.

    Article  CAS  Google Scholar 

  • Brown D H and Buck G W 1979 Desiccation effects and cation distribution in bryophytes. New Phytol. 82, 115–125.

    Article  CAS  Google Scholar 

  • Callaghan T V, Collins N J and Callaghan C H 1978 Photosynthesis, growth, and reproduction of Hylocomium splendens and Polytrichum commune in Swedish Lapland. Oikos 31, 73–88.

    Google Scholar 

  • Carleton T J 1990 Variation in terricolous bryophyte and macrolichen vegetation along primary gradients in Canadian boreal forests. J. Veg. Sci. 1, 585–594.

    Article  Google Scholar 

  • Chapin F S III, Oechel W C, van Cleve K and Lawrence W 1987 The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia (Berlin) 74, 310–315.

    Article  Google Scholar 

  • Dahl E, Elven R, Moen A and Skogen A 1986 Vegetasjonskart over Norge 1:1 500 000. Nasjonalatlas for Norge kartblad 4.1.1. Statens Kartverk, Hønefoss.

    Google Scholar 

  • Dargie T C D 1984 On the integrated interpretation of indirect site ordinations: a case study using semi-arid vegetation in south-eastern Spain. Vegetatio 55, 37–55.

    Article  Google Scholar 

  • Fitje A and Strand L 1973 Tremålingslære, ed. 2. Universitetsforlaget, Oslo.

    Google Scholar 

  • Førland E J 1993 Nedbørnormaler normalperiode 1961–1990. Norske meteorol. Inst. Rapp. Klima 1993, 39, 1–63.

    Google Scholar 

  • Ford J, Crecelius E, Lasorsa B, Allen-Gil S, Martinson J and Landers D 1995 Inorganic contaminants in Arctic Alaskan ecosystems: long-range atmospheric transport or local point sources? Sci. tot. Environm. 160–161, 323–335.

    Article  Google Scholar 

  • Furness S B and Grime J P 1982 Growth rate and temperature responses in bryophytes. II. A comparative study of species of contrasted ecology. J. Ecol. 70, 525–536.

    Article  Google Scholar 

  • Gjengedal E and Steinnes E 1990 Uptake of metal ions in moss from artificial precipitation. Environm. Monit. Assessment 14, 77–87.

    Article  CAS  Google Scholar 

  • Hansen K, Draaijers G P J, Ivens W P M F, Gundersen P and van Leeuwen N F M 1994 Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmospheric Environm. 28, 3195–3205.

    Article  CAS  Google Scholar 

  • Heikkinen R 1991 Multivariate analysis of esker vegetation in southern Häme, S Finland. Annls bot. fenn. 28, 201–224.

    Google Scholar 

  • Heinrichs H and Mayer R 1977 Distribution and cycling of major and trace elements in two Central European forest ecosystems. J. environm. Qual. 6, 402–406.

    Article  CAS  Google Scholar 

  • Hill M O 1979 DECORANA-A Fortran program for detrended correspondence analysis and reciprocal averaging. Cornell Univ., Ithaca, New York.

    Google Scholar 

  • Hill M O and Gauch H G 1980 Detrended correspondence analysis, an improved ordination technique. Vegetatio 42, 47–58.

    Article  Google Scholar 

  • Hutchinson T C, Adams C M and Gaber B A 1986 Neutralization of acidic raindrops on leaves of crop and boreal forest species. Wat. Air Soil Pollution 31, 475–484.

    Article  CAS  Google Scholar 

  • Kendall M G 1938 A new measure of rank correlation. Biometrika 30, 81–93.

    Article  Google Scholar 

  • Lewis Smith R I 1978 Summer and winter concentrations of sodium, potassium and calcium in some maritime Antarctic cryptogams. J. Ecol. 66, 891–909.

    Article  Google Scholar 

  • Lukkala O J 1942 Sateen mittauksia erilaissa metsiköissä. Acta for. fenn. 50, 23, 1–13. (Deutsches Ref.: Niederschlagsmessungen in verschiedenartigen Beständen)

    Google Scholar 

  • Mikola P 1955 Kokeellisia tutkimuksia metsäkarikkeiden hajaantumisnopeudesta. Communtnes Inst. for. fenn. 43, 1, 1–50. (English summ.: Experiments on the rate of decomposition of forest litter)

    Google Scholar 

  • Moen A and Odland A 1993 Vegetasjonsseksjoner i Norge. Univ. Trondheim VitenskMus. Rapp. bot. Ser. 1993, 2, 37–53.

    Google Scholar 

  • Oechel W C and van Cleve K 1986 The role of bryophytes in nutrient cycling in the taiga. Ecol. Stud. 57, 121–137.

    Google Scholar 

  • Økland R H 1994 Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. J. Veg. Sci. 5, 127–138.

    Article  Google Scholar 

  • Økland R H 1995 Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forests. I. Demography. J. Ecol. 83, 697–712.

    Article  Google Scholar 

  • Økland R H and Eilertsen O 1993 Vegetation-environment relationships of boreal coniferous forests in the Solhomfjell area, Gjerstad, S Norway. Sommerfeltia 16, 1–254.

    Google Scholar 

  • Økland R H, Steinnes E and Økland T 1997 Element concentrations in the boreal forest moss, Hylocomium splendens: variation due to segment size, branching patterns and pigmentation. J. Bryol. 19, 673–686.

    Google Scholar 

  • Økland T 1988 An ecological approach to the investigation of a beech forest in Vestfold, SE. Norway. Nord. J. Bot. 8, 375–407.

    Google Scholar 

  • Økland T 1990 Vegetational and ecological monitoring of boreal forests in Norway. I. Rausjømarka in Akershus county, SE Norway. Sommerfeltia 10, 1–52.

    Google Scholar 

  • Økland T 1993 Vegetasjonsøkologisk overvåking av barskog i Gutulia nasjonalpark. Norsk Inst. Jord-Skogkartlegging Rapp. 1993, 6, 1–76.

    Google Scholar 

  • Økland T 1996 Vegetation-environment relationships of boreal spruce forests in ten monitoring reference areas in Norway. Sommerfeltia 22, 1–349.

    Google Scholar 

  • Päivänen J 1966 Sateen jakaantuminen erilaisissa metsiköissä. Silva fenn. 119, 3, 1–37. (English summ.: The distribution of rainfall in different types of forest stands)

    Google Scholar 

  • Petty W H and Lindberg S E 1990 An intensive 1-month investigation of trace metal deposition and throughfall at a mountain spruce forest. Water Air Soil. Pollution 53, 213–226.

    Article  CAS  Google Scholar 

  • Rincon E 1988 The effect of herbaceous litter on bryophyte growth. J. Bryol. 15, 209–217.

    Google Scholar 

  • Rinne R J K and Barclay-Estrup P 1980 Heavy metals in a feather moss, Pleurozium schreberi, and soils in NW Ontario, Canada. Oikos 34, 59–67.

    CAS  Google Scholar 

  • Romell L G 1935 Ecological problems of the humus layer in the forest. Corn. Univ. agr. Exp. Stn Mem. 170, 1–28.

    Google Scholar 

  • Rühling Å, Rasmussen L, Pilegaard K, Mäkinen A and Steinnes E 1987 Survey of atmospheric heavy metal deposition in the Nordic countries in 1985-monitored by moss analyses. Nord. Ministerråd NORD 1987, 21, 1–44.

    Google Scholar 

  • Rühling Å and Tyler G 1970 Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos 21, 92–97.

    Google Scholar 

  • Rühling Å and Tyler G 1971 Regional difference in the deposition of heavy metals over Scandinavia. J. appl. Ecol. 8, 497–507.

    Article  Google Scholar 

  • Skre O, Oechel W C and Miller P M 1983 Patterns of translocation of carbon in four common moss species in a black spruce (Picea mariana) dominated forest in interior Alaska. Can. J. For. Res. 13, 869–878.

    Google Scholar 

  • Sokal R R and Rohlf F J 1995 Biometry, ed. 3. Freeman, New York.

    Google Scholar 

  • Stålfelt M G 1937 Die Bedeutung der Vegetation imWasserhaushalt des Bodens. Svenska Skogsvårdsfören. Tidskr. 35, 161–195.

    Google Scholar 

  • Steinnes E 1989 Biomonitors of air pollution by heavy metals. In Control and fate of atmospheric trace metals. Eds J M Pacyna and B Ottar. pp. 321–338. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Steinnes E 1995 A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. tot. Environm. 160–161, 243–249.

  • Steinnes E, Frantzen F, Johansen O, Rambæk J P and Hanssen J E 1988 Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse 1985. St. Progm. Forurensningsovervåking Rapp. 334, 1–33.

    Google Scholar 

  • Steinnes E, Hanssen J E, Rambæk J P and Vogt N B 1994 Atmospheric deposition of trace elements in Norway: temporal and spatial trends studied by moss analysis. Water Air Soil Pollution 74, 121–140.

    Article  CAS  Google Scholar 

  • Tamm C O 1953 Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddn St. SkogsforskInst. 43, 1, 1–140.

    Google Scholar 

  • van Tooren B F, van Dam D and During H J 1990 The relative importance of precipitation and soil as sources of nutrients for Calliergonella cuspidata in chalk grassland. Funct. Ecol. 4, 101–107.

    Article  Google Scholar 

  • Tukey H B 1970 The leaching of substances from plants. A. Rev. Pl. Physiol. 21, 305–324.

    Article  CAS  Google Scholar 

  • Wells J M and Brown D H 1990 Ionic control of intracellular and extracellular Cd uptake by the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. New Phytol. 116, 541–553.

    Article  CAS  Google Scholar 

  • Wells J M and Brown D H 1996 Mineral nutrient recycling within shoots of the moss Rhytidiadelphus squarrosus in relation to growth. J. Bryol. 19, 1–17.

    Google Scholar 

  • Whittaker R H 1967 Gradient analysis of vegetation. Biol. Rev. Camb. phil. Soc. 42, 207–264.

    CAS  Google Scholar 

  • Woollon F B M 1975 Mineral relationships and ecological distribution of Fissidens cristatus Wils. J. Bryol. 8, 455–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Økland, T., Økland, R.H. & Steinnes, E. Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant and Soil 209, 71–83 (1999). https://doi.org/10.1023/A:1004524017264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004524017264

Navigation