Skip to main content
Log in

Multiple melting behavior of poly(epichlorohydrin) enantiomorphs

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) studies demonstrate that the multiple melting behavior observed in both R and S enantiomorphs of poly(epichlorohydrin), their equimolar blend and the stereoblock copolymer form follows two distinctly different patterns, depending on the crystallization conditions. Isothermal crystallization at large undercoolings results in primary crystallites which during the heating scan undergo a process of melting/recrystallization and final melting, evidenced by a triple melting peak endotherm with the shape and position of the highest melting peak strongly dependent on scanning rate. By comparison, isothermal crystallization at small undercoolings yields primary and secondary crystallized material which melts with a double peak endotherm, the shape of which depends strongly on the crystallization time, with no indication of reorganization during the scan. These melting behavior observations support previous suggestions about the role of enantiomorphism in the crystallization of the stereoblock copolymer. Characteristic slow overall rates of crystallization of poly(epichlorohydrin) make this polymer an ideal subject for the study and refinement of multiple melting in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Bair, R. Salovey, T. W. Huseby, Polymer 8 (1967) 9.

    Google Scholar 

  2. R. C. Roberts, J. Polym. Sci., Polym. Lett. 8 (1970), 381.

    Google Scholar 

  3. P. J. Lemstra, T. Kooistra and G. Challa, J. Polym. Sci., Polym. Phys. Ed. 10 (1972) 823.

    Google Scholar 

  4. P. J. Lemstra, A. J. Schouten and G. Challa, ibid. 12 (1974) 1565.

    Google Scholar 

  5. Z. Pelzbauer and R. J. St. John Manley, J. Polym.Sci., Part A-2 8 (1970) 649.

    Google Scholar 

  6. J. T. Yeh and J. Runt, J. Polym. Sci., Polym. Phys. Ed. 27 (1989) 1543.

    Google Scholar 

  7. J. Rodriguez-Arnold, A. Zhang, S. Z. D. Cheng, A. Lovinger, E. T. Hsieh, P. Chu, T. W. Johnson, K. G. Honnell, R. G. Geerts, S. J. Palacki, G. R. Hawley and M. B. Welch, Polymer 35 (1994) 1884.

    Google Scholar 

  8. V. Caldas, G. R. Brown, R. S. Nohr and J. G. Macdonald, J. Polym. Sci, Polym. Phys. Ed. 34 (1996) 2085.

    Google Scholar 

  9. E. G. Lovering and D. C. Wooden, J. Polym. Sci., Polym. Phys. Ed. 7 (1969) 1639.

    Google Scholar 

  10. W. M. Prest, Jr., and D. J. Luca, J. Appl. Phys. 46 (1975) 4136.

    Google Scholar 

  11. J. S. Chung and P. Cebe, Polymer 33 (1992) 2312.

    Google Scholar 

  12. Idem., ibid. 33 (1992) 2325.

  13. T. P. Russell and J. T. Koberstein, J. Polym. Sci., Polym. Phys. Ed. 23 (1985) 1109.

    Google Scholar 

  14. D. J. Blundell, Polymer 28 (1987) 2248.

    Google Scholar 

  15. M. P. Divito, R. B. Cassel, M. Margulies and S. Goodkowsky, Amer. Lab. August (1995) 28.

  16. K. L. Singfield and G. R. Brown, Macromolecules 28 (1995) 1290.

    Google Scholar 

  17. K. L. Singfield, J. M. Klass and G. R. Brown, ibid. 28 (1995) 8006.

    Google Scholar 

  18. P. J. Holdsworth and A. Turner-Jones, Polymer 12 (1971) 195.

    Google Scholar 

  19. R. C. Roberts, Polymer 10 (1969) 117.

    Google Scholar 

  20. G. E. Sweet and J. P. Bell, J. Polym. Sci., Part A-2 10 (1972) 1273.

    Google Scholar 

  21. P. B. Rim and J. P. Runt, Macromolecules 16 (1983) 762.

    Google Scholar 

  22. Y. Lee and R. S. Porter, ibid. 20 (1987) 1336.

    Google Scholar 

  23. H. Janeczek, B. Trzebicka and E. Turska, Polym. Commun. 28 (1987) 123.

    Google Scholar 

  24. D. C. Bassett, R. H. Olley and I. A. M. Al-Raheil, Polymer 29 (1988) 1745.

    Google Scholar 

  25. R. Verma, H. Marand and B. Hsiao, Macromolecules 29 (1996) 7767.

    Google Scholar 

  26. S. Z. D. Cheng, M. Y. Cao and B. Wunderlich, ibid. 19 (1986) 1868.

    Google Scholar 

  27. I. A. Al-Raheil and A. M. Qudah, A Polym. Int. 37 (1995) 249.

    Google Scholar 

  28. F. J. Medellin-Rogriguez and P. J. Phillips, Macromolecules 29 (1996) 7491.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singfield, K.L., Brown, G.R. Multiple melting behavior of poly(epichlorohydrin) enantiomorphs. Journal of Materials Science 34, 1323–1331 (1999). https://doi.org/10.1023/A:1004502232614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004502232614

Keywords

Navigation