Skip to main content
Log in

An STM and atomic force microscopy study of the effects of 1.8 MeV electron bombardment on the surface of graphite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly oriented pyrolitic graphite was irradiated with 1.8 MeV electrons at 45° and near-grazing (86°) angles of incidence. For doses up to 1016 cm-2 electrons the surface of the samples subjected to 45° incidence, observed by both STM and atomic force microscopy (AFM) remained the same as the original sample showing only the usual periodic atomic corrugation, with an atomic spacing of 0.246 nm. For near-grazing incidence, at a dose of 5×1012 cm-2 electrons, features of nanometre size are observed, some elongated along the direction of the beam incidence. These are attributed to the effects of single electron–carbon interactions in the top surface layers. At a dose of 5×1014 cm-2 electrons (near grazing incidence) both STM and AFM observations show an anomalously large (period 2.5–17 nm) superperiodicity superimposed on the normal 0.246 nm atomic spacing of graphite. This Moiré-like pattern suggests that the corrugations are electronic as well as topographic in origin. We propose that near-grazing incidence electron irradiation causes break-up of the surface layers into fragments, largely retaining six-fold atomic rings, that rotate by a small angle resulting in the observed pattern due to interaction with deeper bulk-structure layers. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Porte, M. Phaner, C. H. de Villeneuve, N. Moncoffre and J. Tousset, Nucl. Instru. Methods Phy. Res. B44 (1989) 116.

    Google Scholar 

  2. L. Porte, C. H. de Villeneuve and M. Phaner, J. Vac. Sci. Techol. B9(2) (1991) 1064.

    Google Scholar 

  3. R. Coratger, A. Claverie, F. Ajustron and J. Beauvillain, Surf. Sci. 227 (1990) 7.

    Google Scholar 

  4. R. Coratger, A. Claverie, A. Chahboun, V. Landry, F. Ajustron and J. Beauvillain, ibid. 262 (1992) 208.

    Google Scholar 

  5. H. Kang, K. H. Park, C. Kim, B. S. Shim, S. Kim and D. W. Moon, Nucl. Instru. & Methods Phys. Res. B67 (1992) 312.

    Google Scholar 

  6. G. M. Shedd and P. E. Russell, J. Vac. Sci. Technol. A9(3) (1991) 1261.

    Google Scholar 

  7. T. C. Shen, R. T. Brockenbrough, J. S. Hubacek, J. R. Tucher and J. W. Iyding, ibid. B(2) (1991) 1376.

    Google Scholar 

  8. H. Kemmer, S. Grafstrom, M. Neitzer, M. Wortge, R. Neumann, C. Trautmann, J. Vetter and Angert, Ultramicroscopy, 42–44 (1992) 1345.

    Google Scholar 

  9. T. Li, B. V. King, R. J. Macdonald, G. F. Cotterill, D. J. O'connor and Q. Yang, Surf. Sci. 312 (1994) 399.

    Google Scholar 

  10. Junjue Yan, Zhigang Li, Chuanyong Bai, W. S. Yang, Yugang Wang, Weijiang Zhao, Yixiu Kang, F. C. Yu, Pongji Zhai and Xiaowei Fang, J. Appl. Phys. 75 (3) (1994) 1390.

    Google Scholar 

  11. C. Marton, H. Bu, K.J. Boyd, S. S. Todorov, A. H. Al-Bayati and J. W. Ravalais, Surf. Sci. 326 (1995) L489.

    Google Scholar 

  12. K. P. Reimann, W. Bolse, U. Geyer and K. P. Lieb, Europhy. Lett. 30 (8) (1995) 463.

    Google Scholar 

  13. W. Bolse, K. Reimann, U. Geyer and K. P. Lieb, Nucl. Instru & Methods B, in press.

  14. L. P. Biro, J. Gyulai and K. Havancsak, ibid. in press.

  15. A. M. C. Perez-martin, J. Dominguez-Vazquez, J. J. Jimenez-Rodriguez, R. Collins and A. Gramarti, Nucl. Instru. Methods Phys. Res. B90 (1994) 424.

    Google Scholar 

  16. J. R. Hahn, H. Kang, S. Song and I. C. Jeon, Phys. Rev. B53 (1996) R1725.

    Google Scholar 

  17. Q. Yang, T. Li, B. V. King and R. J. Macdonald, ibid. B53 (1996) 3032.

    Google Scholar 

  18. C. T. Reiman, P. A. Sullivan, A. Turpitz, S. Altman, A. P. Quist, A. Bergman, S. O. Oscarsson, B. U. R. Sundqvist and P. Hakansson, Surf. Sci. 341 (1995) L1019.

    Google Scholar 

  19. B. K. Annis, D. F. Pedraza and S. P. Withrow, J. Mater. Res. 8 (1993) 2587.

    Google Scholar 

  20. R. C. Barrett, J. Nogami and C. F. Quate, Appl. Phys. Lett. 57 (1990) 992.

    Google Scholar 

  21. C. G. Slough, W. W. Mcnairy, R. V. Coleman, J. Garnaes, C. B. Prater and P. K. Hansma, Phys. Rev. B42 (1990) 9255.

    Google Scholar 

  22. P. Marmier and Sheldon, in “Physics of Nuclei and Particles”, Vol. 1, (Academic Inc, New York, 1969) Ch. 4.

    Google Scholar 

  23. A. Dunlop, F. Rullier-Albenque, C. Jaouen, C. Templier and J. Davenas (eds) “Materials under Irradiation”, (1993) p. 31.

  24. M. Kuwabara, D. R. Clarke and D. A. Smith, Appl. Phys. Lett. 56 (1990) 2396.

    Google Scholar 

  25. J. E. Buchley, J. L. Wragg, H. W. White, A. Bruckdorfer and D. L. Worcester, J. Vac. Sci. Technol. B9 (1991) 1079.

    Google Scholar 

  26. J. Koike and D. F. Pedraza, Mater. Res. Soc. Symp. Proc. 279 (1993) 67.

    Google Scholar 

  27. Idem, J. Mater. Res. 9 (1994) 1899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.J., Wilson, I.H., Xu, J.B. et al. An STM and atomic force microscopy study of the effects of 1.8 MeV electron bombardment on the surface of graphite. Journal of Materials Science 33, 4657–4663 (1998). https://doi.org/10.1023/A:1004497511500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004497511500

Keywords

Navigation