Skip to main content
Log in

Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain.

In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form

$$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$

which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Amin, A. K. Mukherjee and J. E. Dorn, J. Mech. Phys. Solids 18 (1970) 413.

    Google Scholar 

  2. R. W. Evans and B. Wilshire, “Creep of metals and alloys” (The Institute of Metals, London, 1985) p. 116.

    Google Scholar 

  3. H. E. Evans and K. R. Williams, Phil. Mag. 25 (1972) 1399.

    Google Scholar 

  4. N. S. Akulav, Acta Metall. 12 (1964) 1195.

    Google Scholar 

  5. J. C. M. Li, ibid. 11 (1963) 1269.

    Google Scholar 

  6. G. A. Webster, Phil. Mag. 14 (1966) 775.

    Google Scholar 

  7. B. Derby and M. F. Ashby, Acta Metall. 35 (1987) 1349.

    Google Scholar 

  8. A. S. Argon and A. K. Battacharya, ibid. 35 (1987) 1499.

    Google Scholar 

  9. R. Raj and M. F. Ashby, Metall. Trans. 2 (1971) 1113.

    Google Scholar 

  10. R. Raj, ibid. A6 (1975) 1499.

    Google Scholar 

  11. H. J. Frost and M. F. Ashby, “Deformation–mechanism maps” (Pergamon, Oxford, UK, 1982).

    Google Scholar 

  12. G. Malakondaiah, N. Prasad, G. Sundararajan and P. Rama Rao, Acta Metall. 36 (1988) 2167.

    Google Scholar 

  13. G. L. Reynolds, W. B. BeerÉ and B. Burton, Metal Sci. 11 (1977) 213.

    Google Scholar 

  14. P. Gruffel, P. Carry and A. Mocellin, Sci. Ceram. 14 (1988) 587.

    Google Scholar 

  15. A. H. Chokshi and J. R. Porter, J. Mater. Sci. 21 (1986) 705.

    Google Scholar 

  16. A. G. Robertson, D. S. Wilkinson and C. H. CÁceres, J. Amer. Ceram. Soc. 74 (1991) 915.

    Google Scholar 

  17. D. M. Owen and A. H. Chokshi, Scripta Metall. Mater. 29 (1993) 869.

    Google Scholar 

  18. W. R. Cannon and O. D. Sherby, J. Amer. Ceram. Soc. 60 (1977) 44.

    Google Scholar 

  19. A. H. Chokshi, J. Mater. Sci. 25 (1990) 3221.

    Google Scholar 

  20. Y. Yoshizawa and T. Sakuma, Acta Metall Mater. 40 (1992) 2943.

    Google Scholar 

  21. Y. Yoshizawa, PhD Dissertation, University of Tokyo, Japan, 1993.

    Google Scholar 

  22. H. Yoshida, K. Okada, Y. Ikuhara and T. Sakuma, Phil. Mag. Lett. 76 (1997) 9.

    Google Scholar 

  23. Y. Takigawa, Y. Ikuhara and T. Sakuma, in “Materials science forum, superplasticity in advanced materials ICSAM-97, ” Vol. 243-245, Edited by A. H. Chokshi (Trans Tech Publications, Switzerland, 1997) p. 167.

    Google Scholar 

  24. P. G. MCVetty, Mech. Eng. 56 (1934) 149.

    Google Scholar 

  25. F. Garofalo, “Fundamentals of creep and creep-rupture in metals” (MacMillan, New York, 1970).

    Google Scholar 

  26. R. M. Cannon, W. H. Rhodes and A. H. Heuer, J. Amer. Ceram. Soc. 63 (1980) 46.

    Google Scholar 

  27. M. L. Gall, B. Lesage and J. Bernardini, Phil. Mag. A 70 (1994) 761.

    Google Scholar 

  28. D. Prot and C. Monty, ibid. 73 (1996) 899.

    Google Scholar 

  29. B. Burton, “Diffusional creep of polycrystalline materials” (Trans. Tech. Publ. Aedermannsdorf, Switzerland, (1977).

    Google Scholar 

  30. B. Burton, Mater. Sci. Eng. 10 (1972) 9.

    Google Scholar 

  31. E. Arzt, M. F. Ashby and R. A. Verrall, Acta Metall. 31 (1983) 1977.

    Google Scholar 

  32. T. G. Langdon, Phil. Mag. 22 (1970) 689.

    Google Scholar 

  33. R. C. Gifkins, Metall. Trans. A7 (1976) 1225.

    Google Scholar 

  34. A. Arieli and A. K. Mukherjee, Mater. Sci. Eng. 45 (1980) 61.

    Google Scholar 

  35. J. P. Hirth and J. Lothe, “Theory of dislocations, ” (Wiley-Interscience Publication, New York 1982) p. 555, p. 774.

    Google Scholar 

  36. S. Sakaguchi, N. Murayama, Y. Kodama and F. Wakai, J. Mater. Sci. 10 (1991) 282.

    Google Scholar 

  37. A. OrlovÁ and J. Cadek, Phil. Mag. 28 (1973) 891.

    Google Scholar 

  38. H. Hasegawa, R. Hasegawa and S. Karashima, Trans. JIM 11 (1970) 101.

    Google Scholar 

  39. A. Crosby and P. E. Evans, J. Mater. Sci. 8 (1973) 1573.

    Google Scholar 

  40. W. R. Cannon and T. G. Langdon, ibid. 23 (1988) 1.

    Google Scholar 

  41. A. H. Chokshi and T. G. Langdon, Mater. Sci. Tech. 7 (1991) 577.

    Google Scholar 

  42. J. D. French, J. Zhao, M. P. Harmer, H. M. Chan and G. A. Miller, J. Amer. Ceram. Soc. 77 (1994) 2857.

    Google Scholar 

  43. A. H. Heuer, N. J. Tighe and R. M. Cannon, ibid. 63 (1980) 53.

    Google Scholar 

  44. R. S. Mishra, D. Banerjee and A. K. Mukherjee, Mater. Sci. Eng. A192/193 (1995) 756.

    Google Scholar 

  45. I-W. Chen and L. A. Xue, J. Amer. Ceram. Soc. 73 (1990) 2585.

    Google Scholar 

  46. Z. C. Wang, N. Ridley and T. J. Davies, J. Mater. Sci. Lett. 14 (1995) 355.

    Google Scholar 

  47. O. A. Kaibyshev, R. Z. Valiev and A. K. Emaletdinov, Phys. Status Solidi A90 (1985) 197.

    Google Scholar 

  48. R. Z. Valiev, V. YU. Gertsman and O. A. Kaibyshev, ibid. A97 (1986) 11.

    Google Scholar 

  49. R. I. Todd, in “Superplasticity: 60 years after Person, ” edited by N. Ridley (Institute of Materials, London, 1995) p. 33.

    Google Scholar 

  50. L. Priester and S. Lartigue, J. Eur. Ceram. Soc. 8 (1991) 47.

    Google Scholar 

  51. S. Lartigue and L. Priester, J. Amer. Ceram. Soc. 71 (1988) 430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Sakuma, T. Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3. Journal of Materials Science 33, 4879–4885 (1998). https://doi.org/10.1023/A:1004493110802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004493110802

Keywords

Navigation