Skip to main content
Log in

Fatigue crack closure and crack growth behaviour in a titanium alloy with different microstructures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fatigue crack closure and crack growth behaviour in Ti–2.5 wt % Cu alloy with two equiaxed and two lamellar microstructures have been investigated by constant-load amplitudetests. Plasticity-induced crack closure and roughness-induced crack closure have been characterized separately by experimental methods. A change in closure mechanism from plasticity-induced crack closure at high ΔK values (region of high stress intensity ranges)to roughness-induced crack closure at low ΔK values occurs in a solution-annealed equiaxed microstructure, while plasticity-induced crack closure is the operative closure mechanism in an over-aged equiaxed microstructure over the whole range of ΔK and roughness-induced crack closure occurs in two lamellar microstructures. The crack closing stress intensity factor for plasticity-induced crack closure increases continuously with increasing maximum stress intensity. The crack closing stress intensity factor for roughness-induced crack closure increases with increasing maximum stress intensity at low ΔK, and remains constant at high ΔK. Crack closure and crack path deflection have a significant influence on the crack growth rates. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Elber, Engng Fracture Mech. 2 (1970) 37.

    Google Scholar 

  2. Idem, in “Damage Tolerance in Aircraft Structures”, ASTM STP 486 (American Society for Testing and Materials, Philadelphia, PA, 1971) p. 230.

  3. S. Suresh, in “Plastic Deformation and Fracture of Materials”, Materials Science and Technology, Vol. 6, edited by R. W. Cahn, P. Haasen and E. J. Kramer (VCH Verlagsgesellschaft mbH, Weinheim, 1993) p. 281. f

    Google Scholar 

  4. R. O. Ritchie and S. Suresh, Metall. Trans. A 13A (1982) 937.

    Google Scholar 

  5. S. Suresh and R. O. Ritchie, ibid. 13A (1982) 1627.

    Google Scholar 

  6. S. Suresh, G. F. Zamiski and R. O. Ritchie, ibid 13A (1982) 1627.

    Google Scholar 

  7. H. Kobayashi, H. Tsuji and K. D. Park, in “Fracture and Strength '90”, Key Engineering Materials, Vols 51 and 52, edited by K. Y. Lee and H. Takahashi (Trans Tech Publications, Zürich, 1990) p. 355.

    Google Scholar 

  8. P. K. Liaw, T. R. Leax, R. S. Williams and M. G. Peck, Metall. Trans. A 13A (1982) 1607.

    Google Scholar 

  9. S. Dhar, in “'90”, edited by H. Kitagawa and T. Tanaka (Materials and Component Engineering Publications Ltd, Birmingham, 1990) p. 1261.

    Google Scholar 

  10. P. J. Cotterill and J. F. Knott, Acta Metall. Mater. 40 (1992) 2753.

    Google Scholar 

  11. L. P. Zawada and T. Nicholas, in “Fracture Mechanics: Eighteenth Symposium”, ASTM STP 945, edited by D. T. Read and R. P. Reed (American Society for Testing and Materials, Philadelphia, PA, 1988) p. 192.

    Google Scholar 

  12. A. K. Vasudevan, K. Sadananda and N. Louat, Mater. Sci. Eng. A188 (1994) 1.

    Google Scholar 

  13. N. Louat, K. Sadananda, M. Duesbery and A. K. Vasudevan, Metall. Trans. A 24A (1993) 2225.

    Google Scholar 

  14. J. D. Dougherty, T. S. Srivatsan and J. Padovan, Engng Fracture Mech. 56 (1997) 167.

    Google Scholar 

  15. R. Rippin, C. Bichler, C. Sommitsch and O. Kolednik, in “Fatigue '96”, edited by G. Lütjering and H. Nowack (Elsevier Science, Oxford, 1996) p. 411.

    Google Scholar 

  16. R. C. Mcclung, B. H. Thacker and S. Roy, Int. J. Fracture 50 (1991) 27.

    Google Scholar 

  17. R. Pippan, O. Koledink and M. Lang, Fatigue Fracture Engng Mater. Struct. 17 (1994) 721.

    Google Scholar 

  18. K. Asami, in “Fractography”, Current Japanese Materials Research, Vol. 6, edited by R. Koterazawa, R. Ebara and S. Nishida (Elsevier Applied Science, Ltd, 1990) p. 1.

  19. P. A. Blenkinsop and R. E. Goosey, in “The Science, Technology and Application of Titanium”, edited by R. I. Jaffe and N. E. Promisel (Pergamon Press, Oxford, 1970).

    Google Scholar 

  20. H. E. Exner, Pract. Metallogr. 30 (1993) 287.

    Google Scholar 

  21. N. A. Fleck, The use of compliance and electrical resistance techniques to characterise fatigue crack closure, Report No. CUED/C/MATS/TR89, (Department of Engineering, Cambridge University, Cambridge, 1982).

    Google Scholar 

  22. S.-H. Wang, PhD thesis, Technical University of Darmstadt, Germany, (1997).

    Google Scholar 

  23. S.-H. Wang and C. MÜller, Mater. Sci. Eng. A (1998) in press.

  24. J. WasÉn, B. Karlsson and K. Hamberg, Acta Stereol. 6 (1987) 199.

    Google Scholar 

  25. S. Suresh, Metall. Trans. A 14A (1983) 2375.

    Google Scholar 

  26. Idem, ibid. 16A (1985) 249.

  27. T. Ogawa, K. Tokaji and K. Ohya, Fatigue Fracture Engng. Mater. Struct. 16 (1993) 973.

    Google Scholar 

  28. S. V. Kamat and N. Eswara prasad, Scripta Metall. Mater. 26 (1992) 1713.

    Google Scholar 

  29. F.-S. Lin and E. A. Starke, Mater. Sci. Eng. 43 (1980) 65.

    Google Scholar 

  30. S.-H. Wang and C. MÜller, Fatigue Fracture Engng. Mater. Struct. 21 (1998) in press.

  31. S.-H. Wang, C. MÜller and H. E. Exner, Metall. Mater. Trans. A 29A (1998) 1933.

    Google Scholar 

  32. R. C. Mcclung and H. Sehitoglu, Engng Fracture Mech. 33 (1989) 237.

    Google Scholar 

  33. M. F. Kanninen and C. Atkinson, Int. J. Fracture 16 (1980) 53.

    Google Scholar 

  34. T. Ogawa and H. Kobayashi, Fatigue Fracture Engng. Mater. Struct. 10 (1987) 273.

    Google Scholar 

  35. R. O. Ritchie, W. Yu, A. F. Blom and D. K. Holm, ibid. 10 (1987) 343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SH., MÜLler, C. Fatigue crack closure and crack growth behaviour in a titanium alloy with different microstructures. Journal of Materials Science 33, 4509–4516 (1998). https://doi.org/10.1023/A:1004491932456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004491932456

Keywords

Navigation