Skip to main content
Log in

Growth parameters on the defects formation in a grown silicon crystal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth of macroscopically dislocation-free Czochralski silicon crystals, various defects such as D defects and microdefects causing oxidation-induced stacking faults can form. The effects of growth parameters such as pulling speed or cooling rate of the crystal on the formation of these defects is examined. From an experiment on the continuous cooling of a silicon crystal from 1400 °C, it is found that there is an intermediate cooling rate range in which the nucleation of OISFs is enhanced. The impact of the presence of OISFs on the electrical properties of the silicon crystal is examined with a minority lifetime mapper, and the resistivity is measured with a four-point probe. A higher pulling speed of the crystal from the melt results in a higher density of particles on the polished silicon wafers. This implies that many of the particles present on the polished silicon wafers are related to solidification of the silicon crystal. Slower pulling from the melt followed by controlled cooling thereafter is suggested as a means of lowering these grown-in defects in Czochralski silicon crystals. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hasebe, Y. Takeoka, S. Shinoyama and S. Naito, in “Defects control in semiconductors”, edited by K. Sumino (Elsevier North-Holland, Amsterdam, 1990) p. 157.

    Google Scholar 

  2. S. Mahajan, G. A. Rozgonyi and D. Basen, Appl. Phys. Lett 30 (1997) 73.

    Google Scholar 

  3. Y. K. Kim, H. S. Cho, H. W. Lee, D. Buck, J. Rigotte, J. Yeh, S. Hahn and W. A. Tiller, in “Electrochemical Society Spring Meeting, Washington, DC, May 5–10, Extended Abstract, Vol. 91–1, 186, 1991.

    Google Scholar 

  4. M. Porrini, G. Borionetti and G. Ferrero, in “Crystalline defects and contamination”, 1993 edited by B. O. Kolbesen, P. Stallhofer, C. Claeys and F. Tardif, Proceedings of the Electrochemical Society, Vol. 93–15.

  5. S. N. Rea and H. M. Grimes, in Electrochemical Society Spring Meeting, Philadelphia, PA, May 1987 (Electrochemical Society, 1987); Abstract 74, p. 98.

  6. Yamashita and Shimanuki, in Electrochemical Society Spring Meeting, Philadelphia, PA, May 1989 (Electrochemical Society, 1989); Abstract 224.

  7. A. J. R. de Kock and W. M. van de Wijgert, J. Cryst. Growth 49 (1980) 718.

    Google Scholar 

  8. H. Tsuya, Y. Kondo and M. Kanamori, Jpn. J. Appl. Phys. 22 (1983) L16.

    Google Scholar 

  9. J. G. Park, S. P. Choi, G. S. Lee, Y.J. Jeong, Y. S. Kwak, C. K. Shin, S. Hahn, W. Smith and P. Mascher, in “Physics and chemistry of SiO2 and Si—SiO2interface 2”, edited by C. R. Helms and B. E. Deal (Plenum, New York 1993) p. 289.

    Google Scholar 

  10. M. W. Jenkins, J. Electrochem. Soc., 124 (1977) 757.

    Google Scholar 

  11. F. Shimura, Appl. Phys. Lett. 39 (1981) 987.

    Google Scholar 

  12. S. P. Murarka, T. E. Seidel, J. V. Dalton, J. M. Dishman and M. H. Read, J. Electrochem. Soc. 127 (1980) 717.

    Google Scholar 

  13. R. Rantamaki, J. Molarius, M. Tilli and T. Tuomi, Physica Scripta T69 (1997) 264.

    Google Scholar 

  14. H. F. Matare, in “Defect electronics in semiconductors” (Wiley—Interscience, New York, 1971) Chapters 8 and 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.K., Ha, T.S. & Yoon, J.K. Growth parameters on the defects formation in a grown silicon crystal. Journal of Materials Science 33, 4627–4632 (1998). https://doi.org/10.1023/A:1004489309683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004489309683

Keywords

Navigation