Skip to main content
Log in

Moisture-assisted crack growth at epoxy–glass interfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The double cleavage drilled compression (DCDC) test was used to measure the critical energy release rate, moisture-assisted crack growth, and fatigue threshold for epoxy–glass interfaces bonded with and without a silane coupling agent. The DCDC specimen consists of two glass beams (either soda-lime or fused silica) bonded together with an epoxy adhesive. A through-the-thickness hole is drilled in the centre of the specimen. In the DCDC test compressive loading causes tensile stresses to develop at the poles of the drilled hole. Cracks then nucleate in the epoxy–glass interface, extend from the poles, and propagate axially along the interface in primarily mode I loading. The resistance to moisture-assisted crack growth at untreated epoxy–glass interfaces is significantly less than that in monolithic glass specimens. However, the resistance to moisture-assisted crack growth at silane bonded epoxy–glass interfaces can be comparable with or greater than that in monolithic glass. Silane bonding of epoxy to glass is more effective with fused silica than soda-lime glass, with the fatigue limit of silane bonded epoxy–fused silica interfaces being about 2.5 times greater than that for silane bonded epoxy–soda-lime glass. These results are discussed in terms of possible interfacial crack growth mechanisms. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wu, “Polymer interface and adhesion” (Marcel Dekker, New York, 1982).

    Google Scholar 

  2. A. J. Kinloch, “Adhesion and adhesives: science and technology” (Chapman and Hall, London, 1987).

    Google Scholar 

  3. E. P. Plueddemann, “Silane coupling agents”, 2nd Edn (Plenum Press, New York, 1991).

    Google Scholar 

  4. A. J. Kinloch, Preprint No. 08, Proceedings of the Institution of Mechanical Engineers, London, 1996.

  5. R. Lin, H. Wang, D. S. Kaleka and L. S. Penn, J. Adhesion Sci. Technol. 10(4) (1996) 327.

    Google Scholar 

  6. R. Lin, R. P. Quick, J. Kuang and L. S. Penn, ibid. 10(4) (1996) 341.

    Google Scholar 

  7. M. R. Turner, B. J. Dalgleish, M. Yitte and A. G. Evans, Acta Metall. Mater. 43 (1995) 3459.

    Google Scholar 

  8. M. Y. He, M. R. Turner and A. G. Evans, ibid. 43 (1995) 3453.

    Google Scholar 

  9. J. E. Ritter, T. J. Lardner, A. J. Stewart and G. C. Prakash, J. Adhesion 49 (1995) 97.

    Google Scholar 

  10. Z. Suo and J. W. Hutchinson, Mater. Sci. Enging A107 (1989) 135.

    Google Scholar 

  11. C. Janssen, in Proceedings of the Tenth International Congress on Glass, Kyoto, Japan, July, 1974 (The Ceramic Society of Japan, Kyoto, Japan, 1974) pp. 23–30.

    Google Scholar 

  12. W. H. Smith, Closed Loop Magazine Spring (1987) 18.

  13. J. D. Helfinstine, S. T. Gulati and D. G. Pikles, in “The Physics of Non-Crystaline Solids”, edited by L. D. Pye, W. C. LaCourse and H. J. Stevens (Taylor and Francis, Bristol, PA, 1992) pp. 654–8.

    Google Scholar 

  14. S. W. Wiederhorn, J. Amer. Ceram. Soc. 50(8) (1969) 407.

    Google Scholar 

  15. S. M. Wiederhorn and L. H. Bolz, ibid. 53(10) (1970) 543.

    Google Scholar 

  16. J. E. Ritter, T. J. Lardner, W. Grayeski, G. C. Prakash and J. Lawrence, J. Adhesion 63 (1997) 265.

    Google Scholar 

  17. R. K. Iler, “The chemistry of silica” (Wiley, New York, 1975).

    Google Scholar 

  18. T. A. Michalske and S. W. Freiman, J. Amer. Ceram. Soc. 66 (1953) 284.

    Google Scholar 

  19. C. G. Patano, D. B. Dove and G. Y. Onoda, J. Vac. Sci. Technol. 13 (1) (1976) 414.

    Google Scholar 

  20. T. A. Michalske and E. R. Fuller Jr, J. Amer. Ceram. Soc. 68 (11) (1985) 586.

    Google Scholar 

  21. M.-Y. He and J. W. Hutchinson, Int. J. Solids Structures 25 (9) (1989) 1053.

    Google Scholar 

  22. R. H. Doremus, “Glass science” (Wiley, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, J.E., Fox, J.R., Hutko, D.I. et al. Moisture-assisted crack growth at epoxy–glass interfaces. Journal of Materials Science 33, 4581–4588 (1998). https://doi.org/10.1023/A:1004477006957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004477006957

Keywords

Navigation