Skip to main content
Log in

Viscoelastoplasticity of Rubbery Polymers at Finite Strains

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Constitutive relations are derived for the nonlinear response of rubbery polymers and polymeric melts at isothermal loading. The model is based on a concept of nonaffine temporary networks, where breakage and reformation of active chains are responsible for the viscoelastic behavior, whereas gliding of junctions with respect to a bulk medium reflects the plastic effects. Constitutive equations are developed using the laws of thermodynamics. They contain only one extra adjustable parameter compared to the Lodge formula in finite viscoelasticity. The model is applied to study stresses and residual strains in a bar at uniaxial extension and in a layer at simple shear. Fair agreement is demonstrated between experimental data for polystyrene and polyethylene at elevated temperature and the results of numerical simulation.

Sommario. Vengono derivate equazioni costitutive che descrivono la risposta nonlineare di gomme polimeriche e fusioni di polimeri nel caso di carichi isotermi. Il modello proposto è basato sul concetto di reti temporanee non affini, in cui la rottura e la riformazione di legami attivi sono responsabili del comportamento viscoielastico, mentre lo scorrimento di giunzioni rispetto alla matrice del materiale è veicolo di effetti plastici. Le equazioni costitutive vengono sviluppate usando le leggi della termodinamica. Esse contengono solo un parametro regolabile aggiuntivo rispetto alla formula di Lodge in viscoelasticità finita. Il modello è applicato allo studio degli sforzi e delle deformazioni residue in una barra in allungamento uniassiale ed in uno strato soggetto a semplice scorrimento. Si dimostra un discreto accordo tra i dati sperimentali per il polistirene ed il polietilene ad elevate temperature e i risultati di simulazioni numeriche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fotheringham, D.G. and Cherry, B.W., ‘The role of recovery forces in the deformation of linear polyethylene’, J. Materials Sci. 13 (1978) 951–964.

    Google Scholar 

  2. Eyring, H., ‘Viscosity, plasticity, and diffusion as examples of absolute reaction rates’, J. Chem. Phys. 4 (1936) 283–291.

    Google Scholar 

  3. Boyce, M.C., Parks, D.M. and Argon, A.S., ‘Large inelastic deformations of glassy polymers. 1. Rate dependent constitutive model’, Mech. Materials 7 (1988) 15–33.

    Google Scholar 

  4. Haward, R.N. and Thackray, G., ‘The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics’, Proc. R. Soc. London A302 (1968) 453–472.

    Google Scholar 

  5. Kocks, U.F., Argon, A.S. and Ashby, M.F., Thermodynamics and Kinetics of Slip, Progress in Materials Science, Vol. 19, Pergamon Press, Oxford, 1975.

    Google Scholar 

  6. Argon, A.S., ‘A theory of the low-temperature plastic deformation of glassy polymers’, Philosophical Magazine A28 (1973) 839–865.

    Google Scholar 

  7. Argon, A.S. and Bessonov, M.I., ‘Plastic deformation in polymides, with new implications on the theory of plastic deformation of glassy polymers’, Philosophical Magazine A35 (1977) 917–933.

    Google Scholar 

  8. Boyce, M.C. and Arruda, E.M., ‘An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers’, Polym. Engng. Sci. 30 (1990) 1288–1302.

    Google Scholar 

  9. Boyce, M.C., Parks, D.M. and Argon, A.S., ‘Plastic flow in oriented glassy polymers’, Int. J. Plasticity 5 (1989) 593–615.

    Google Scholar 

  10. Hasan, O.A. and Boyce, M.C., ‘A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers’, Polym. Engng. Sci. 35 (1995) 331–344.

    Google Scholar 

  11. Wu, P.D. and van der Giessen, E., ‘On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers’, J. Mech. Phys. Solids 41 (1993) 427–456.

    Google Scholar 

  12. Robertson, R.E., ‘Theory of the plasticity of glassy polymers’, J. Chem. Phys. 44 (1966) 3950–3956.

    Google Scholar 

  13. Ree, T. and Eyring, H., ‘Theory of non-Newtonian flow. I. Solid plastic system’, J. Appl. Phys. 26 (1955) 793–800.

    Google Scholar 

  14. Ree, T. and Eyring, H., ‘Theory of non-Newtonian flow. 2. Solution system of high polymers’, J. Appl. Phys. 26 (1955) 800–809.

    Google Scholar 

  15. Bauwens, J.C., Bauwens-Crowet, C. and Homes, G., ‘Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region’, J. Polym. Sci. A-2, 7 (1969) 1745–1754.

    Google Scholar 

  16. Bauwens-Crowet, C., ‘The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates’, J. Materials Sci. 8 (1973) 968–979.

    Google Scholar 

  17. Bauwens-Crowet, C., Bauwens, J.C. and Homes, G., ‘Tensile yield-stress behavior of glassy polymers’, J. Polym. Sci. A-2, 7 (1969) 735–742.

    Google Scholar 

  18. Povolo, F., Schwartz, G. and Hermida, E.B., ‘Temperature and strain rate dependence of the tensile yield stress of PVC’, J. Appl. Polym. Sci. 61 (1996) 109–117.

    Google Scholar 

  19. G'Sell, C. and Jonas, J.J., ‘Yield and transient effects during the plastic deformation of solid polymers’, J. Materials Sci. 16 (1981) 1956–1974.

    Google Scholar 

  20. Caux, X., Coulon, G. and Escaig, B., ‘Influence of the degree of crosslinking on the plastic deformation behaviour of epoxy resins’, Polymer 29 (1988) 808–813.

    Google Scholar 

  21. Coulon, G., Lefebvre, J.M. and Escaig, B., ‘The preyield evolution with strain of the work-hardening rate in glassy polymers (PABM resin)’, J. Materials Sci. 21 (1986) 2059–2066.

    Google Scholar 

  22. Lefebvre, J.M. and Escaig, B., ‘Plastic deformation of glassy amorphous polymers: influence of strain rate’, J. Materials Sci. 20 (1985), 438–448.

    Google Scholar 

  23. Krempl, E., ‘The overstress dependence of inelastic rate of deformation inferred from transient tests’, Materials Sci. Res. Int. 1 (1995) 3–10.

    Google Scholar 

  24. Bordonaro, C.M. and Krempl, E., ‘The effect of strain rate on the deformation and relaxation behavior of 6/6 nylon at room temperature’, Polym. Engng. Sci. 32 (1992) 1066–1072.

    Google Scholar 

  25. Bordonaro, C.M. and Krempl, E., ‘A state variable model for high strength polymers’, Polym. Engng. Sci. 35 (1995) 310–316.

    Google Scholar 

  26. Kitagawa, M., Zhou, D. and Qui, J., ‘Stress-strain curves for solid polymers’, Polym. Engng. Sci. 35 (1995) 1725–1732.

    Google Scholar 

  27. Shay, R.M. and Caruthers, J.M., ‘A new nonlinear viscoelastic constitutive equation for predicting yield in amorphous solid polymers’, J. Rheol. 30 (1986) 781–827.

    Google Scholar 

  28. Wineman, A.S. and Waldron, W.K., ‘Interaction of nonhomogeneous shear, nonlinear viscoelasticity, and yield in a solid polymer’, Polym. Engng. Sci. 33 (1993) 1217–1228.

    Google Scholar 

  29. Wineman, A.S. and Waldron, W.K., ‘Yieldlike response of a compressible nonlinear viscoelastic solid’, J. Rheol. 39 (1995) 401–423.

    Google Scholar 

  30. Drozdov, A.D., ‘A model of adaptive links in nonlinear viscoelasticity’, J. Rheol. 41 (1997) 1223–1245.

    Google Scholar 

  31. Buckley, C.P. and Jones, D.C., ‘Glass-rubber constitutive model for amorphous polymers near the glass transition’, Polymer 36 (1995) 3301–3312.

    Google Scholar 

  32. Green, M.S. and Tobolsky, A.V., ‘A new approach to the theory of relaxing polymeric media’, J. Chem. Phys. 14 (1946) 80–92.

    Google Scholar 

  33. Yamamoto, M., ‘The viscoelastic properties of network structure 1. General formalism’, J. Phys. Soc. Japan 11 (1956) 413–421.

    Google Scholar 

  34. Lodge, A.S., ‘Constitutive equations from molecular network theories for polymer solutions’, Rheologica Acta 7 (1968) 379–392.

    Google Scholar 

  35. Tanaka, F. and Edwards, S.F., ‘Viscoelastic properties of physically cross-linked networks. Transient network theory’. Macromolecules 25 (1992) 1516–1523.

    Google Scholar 

  36. Johnson, M.W. and Segalman, D., ‘A model for viscoelastic fluid behavior which allows non-affine deformation’, J. Non-Newtonian Fluid Mech. 2 (1977) 255–270.

    Google Scholar 

  37. Thien, N.P. and Tanner, R.I., ‘A new constitutive equation derived from network theory’, J. Non-Newtonian Fluid Mech. 2 (1977) 353–365.

    Google Scholar 

  38. Halldin, G.W. and Lo, Y.C., ‘Solid-phase flow behavior of polymers’, Polym. Engng. Sci. 25 (1985) 323–331.

    Google Scholar 

  39. Tomita, Y. and Tanaka, S., ‘Prediction of deformation behavior of glassy polymers based on molecular chain network model’, Int. J. Solids Structures 32 (1995) 3423–3434.

    Google Scholar 

  40. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986.

    Google Scholar 

  41. Mercier, J.L., An Introduction to Tensor Calculus, Wolters-Noordhoff, Groningen, 1970.

    Google Scholar 

  42. Khan, A.S. and Huang, S., Continuum Theory of Plasticity, Wiley, New York, 1995.

    Google Scholar 

  43. Treloar, L.R.G., The Physics of Rubber Elasticity, Clarendon Press, Oxford, 1975.

    Google Scholar 

  44. Lee, E.H., ‘Elastic-plastic deformations at finite strains’, J. Appl. Mech. 36 (1969) 1–6.

    Google Scholar 

  45. Drozdov, A.D., Finite Elasticity and Viscoelasticity, World Scientific, Singapore, 1996.

    Google Scholar 

  46. Scott, K.W. and Stein, R.S, ‘A molecular theory of stress relaxation in polymeric media’, J. Chem. Phys. 21 (1953) 1281–1286.

    Google Scholar 

  47. Landau, L.D. and Lifshitz, E.M., Statistical Physics, Pergamon Press, Oxford, 1969.

    Google Scholar 

  48. Ting, E.C., ‘Dissipation function of viscoelastic materials with temperature dependent properties’, J. Appl. Phys. 44 (1973) 4956–4960.

    Google Scholar 

  49. Christensen, R.M., Theory of Viscoelasticity — An Introduction, Academic Press, New York, 1982.

    Google Scholar 

  50. Jäckle, J., ‘Heat conduction and relaxation in liquids of high viscosity’, Physica A 162 (1990) 377–404.

    Google Scholar 

  51. Hajar, M. and Blanc, R.H., ‘Linear thermoviscoelasticity: 1. A functional model’, Acta Mechanica 130 (1998) 175–183.

    Google Scholar 

  52. Coleman, B.D. and Gurtin, M.E., ‘Thermodynamics with internal state variables’, J. Chem. Phys. 47 (1967) 597–613.

    Google Scholar 

  53. Muller, R., Froelich, D. and Zang, Y.H., ‘Tensile stress and recoverable strain measurements on polystyrene melts. Interpretation of results in terms of rubberlike elasticity’, J. Polym. Sci., Polymer Physics Edition, 25 (1987) 295–310.

    Google Scholar 

  54. Muller, R. and Froelich, D., ‘New extensional rheometer for elongational viscosity and flow birefringence measurements: some results on polystyrene melts’. Polymer 26 (1985) 1477–1482.

    Google Scholar 

  55. Quinzani, L.M. and Valles, E.M., ‘Model analysis of shear-flow behavior of linear low-density polyethylene (LLDPE) using a simple integral constitutive equation’, J. Rheol. 29 (1985) 725–738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. Viscoelastoplasticity of Rubbery Polymers at Finite Strains. Meccanica 34, 85–102 (1999). https://doi.org/10.1023/A:1004456828721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004456828721

Navigation