Skip to main content
Log in

Crack bridging and fibre pull-out in polyethylene fibre reinforced epoxy resins

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation has been undertaken of the stress distributions in high-performance polyethylene fibres bridging cracks in model epoxy composites. The axial fibre stress has been determined from stress-induced Raman band shifts and the effect of fibre surface treatment has been followed using untreated and plasma-treated polyethylene fibres. It is found that when the specimen is cracked, the fibres do not break and stress is transmitted from the matrix to the fibre across the fibre/matrix interface. A debond propagates along the fibre/matrix interface accompanied by friction along the debonded interface. The axial stress distributions in the fibres can be analysed using a partial-debonding model based upon shear-lag theory and it is found that the maximum interfacial shear stress at the bond/debond transition is a function of the debond length. The debonding process has been modelled successfully in terms of the interfacial fracture energy-based criterion developed by Hsueh for the propagation of a debond along a fibre/matrix interface accompanied by constant friction along the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Bannister, M. C. Andrews, A. Cervenka and R. J. Young, Compos. Sci. Technol. 53 (1995) 411.

    Google Scholar 

  2. R. J. Young, Y.-L. Huang, X. Gu and R. J. Day, Plastics, Rubber and Composites: Processing and Applications 23 (1995) 11.

    Google Scholar 

  3. Y. Huang and R. J. Young, Composites 26 (1995) 541.

    Google Scholar 

  4. K. Kendall, J. Mater. Sci. 11 (1976) 638.

    Google Scholar 

  5. R. J. Scheer and J. Nairn, Compos. Eng. 2 (1992) 641.

    Google Scholar 

  6. A. T. Dibenedetto, Compos. Sci. Technol. 42 (1991) 103.

    Google Scholar 

  7. M. J. Pitkethly, J. P. Favre, U. Gaur, J. Jakubowski, S. F. Mudrich, D. L. Caldwell, L. T. Drzal, M. Nardin, H. D. Wagner, L. Dilandro, A. Hampe, J. P. Armistead, M. Desaeger and I. Verpoest, ibid. 48 (1993) 205.

    Google Scholar 

  8. L. T. Drzal and M. adhukar,.J. Mater. Sci. 28 (1993) 569.

    Google Scholar 

  9. B. Miller, P. Muri and L. Rebenfeld, Compos. Sci. Technol. 28 (1987) 17.

    Google Scholar 

  10. M. R. Piggott, P.S. Chua and D. Andison, Polym. Compos. 6 (1985) 242.

    Google Scholar 

  11. B. Lawn, “Fracture of Brittle Solids,” 2nd edition (Cambridge University Press, UK, 1993).

    Google Scholar 

  12. J. Cook and J. E. Gordon, Proc. Roy. Soc. London A282 (1964) 508.

    Google Scholar 

  13. A. Kelly and N. H. Macmillan, “Strong Solids,” 2nd edition (Clarendon Press, Oxford, 1986).

    Google Scholar 

  14. A. G. Evans and R. M. Mcmeeking, Acta Metallurgica 34 (1986) 2435.

    Google Scholar 

  15. P. F. Becher, C-H. Hsueh, P. Angelini and T. N. Tiegs, J. Amer. Ceram. Soc. 71 (1988) 1050.

    Google Scholar 

  16. W. F. Wong and R. J. Young, J. Mater. Sci. 29 (1994) 510.

    Google Scholar 

  17. P. I. GonzÁlez-chi, Deformation micromechanics in polyethylene-epoxy fibre-reinforced composites, Ph.D. thesis, UMIST, 1997.

  18. Y-W. Mai, Mater. Forum 11 (1988) 232.

    Google Scholar 

  19. C. Gurney and J. Hunt, Proc. Roy. Soc. London A299 (1967) 508.

    Google Scholar 

  20. C. H. Hsueh, Acta Metallurgica et Materialia 44 (1996) 2211.

    Google Scholar 

  21. P. Lawrence, Mater. Sci. and Eng. 7 (1972) 1.

    Google Scholar 

  22. C-H. Hsueh, ibid. A123 (1990) 1.

    Google Scholar 

  23. B. Budiansky, A. G. Evans and J. W. Hutchinson, Int. J. Solid Structures 32 (1995) 315.

    Google Scholar 

  24. C. H. Hsueh, J. Mater. Sci. 30 (1995) 1781.

    Google Scholar 

  25. H. L. Cox, British J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  26. M. R. Piggott, Compos. Sci. Technol. 30 (1987) 295.

    Google Scholar 

  27. M. C. Andrews, Stress transfer in arimid/epoxy model composites, Ph.D. thesis, University of Manchester Institute of Science and Technology (UMIST), 1994.

  28. Renishaw Raman Microscope User Guide for Systems 1000, 2000 and 3000 Microscopes, Renishaw plc, UK, 1992.

  29. R. J. Meier and B. J. Kip, Microbeam Analysis 3 (1994) 61.

    Google Scholar 

  30. C. Galiotis, R. J. Young, P. H. J. Yeung and D. N. Batchelder, J. Mater. Sci. 19 (1984) 3640.

    Google Scholar 

  31. J. A. Bennett and R. J. Young, Compos. Sci. Technol. 57 (1997) 945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Chi, P.I., Young, R.J. Crack bridging and fibre pull-out in polyethylene fibre reinforced epoxy resins. Journal of Materials Science 33, 5715–5729 (1998). https://doi.org/10.1023/A:1004455025651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004455025651

Keywords

Navigation