Skip to main content
Log in

Stokes' first problem for a dipolar fluid with nonclassical heat conduction

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The classical heat law of Fourier associates an infinite speed of propagation to a thermal disturbance in a material body. Such behavior is a violation of the causality principle. In recent years, several modifications of Fourier's heat law have been proposed. In this work a modification of Fourier's heat law based on the Maxwell-Cattaneo-Fox (MCF) model is used to describe the influence of heat conduction at low temperatures and/or high heat-flux conditions on Stokes' first problem for a dipolar fluid. The effects of discontinuous boundary data and a finite propagation speed of thermal waves on the velocity and stress fields are investigated. In addition, special and limiting cases of the material constants are examined. Lastly, results for the special case of equal dipolar constants are compared to the corresponding results found using Fourier's heat law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell, On the dynamical theory of gases. Phil. Trans. R. Soc. London 157 (1867) 49-88.

    Google Scholar 

  2. V. Peshkov, “Second sound” in Helium II. J. Phys. (U.S.S.R.) 8 (1944) 381.

    Google Scholar 

  3. C. Cattaneo, Sullacondizione del Calore. Atti del Semin. Matem. e Fis. della Univ. Modena. 3 (1948) 83-101.

    Google Scholar 

  4. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. 2nd ed. Berlin: Springer-Verlag (1996) 383 pp.

    Google Scholar 

  5. M. Chester, Second sound in solids. Phys. Rev. 131 (1963) 2013-2015.

    Google Scholar 

  6. C. C. Ackerman, B. Bertman, H. A. Fairbank and R. A. Guyer, Second sound in solid helium. Phys. Rev. Letters. 16 (1966) 789-791.

    Google Scholar 

  7. B. Straughan and F. Franchi, Bénard convection and the Cattaneo law of heat conduction. Proc. R. Soc. Edin. 96A (1984) 175-178.

    Google Scholar 

  8. C. L. McTaggart and K. A. Lindsay, Nonclassical effects in the Bénard problem. SIAM J. Appl. Math. 45 (1985) 70-92.

    Google Scholar 

  9. P. Puri and P. K. Kythe, Nonclassical thermal effects in Stokes' second problem. Acta Mech. 112 (1995) 1-9.

    Google Scholar 

  10. P. Puri and P. K. Kythe, Discontinuities in velocity gradients and temperature in the Stokes' first problem with nonclassical heat conduction. Quart. Appl. Math. 55 (1997) 167-176.

    Google Scholar 

  11. P. Puri, Plane waves in generalized thermoelasticity. Int. J. Eng. Sci. 11 (1973) 35-744; 13 (1975) 339–340.

    Google Scholar 

  12. D. D. Joseph and L. Preziosi, Heat waves. Rev. Modern Phys. 61 (1989) 41-73.

    Google Scholar 

  13. D. D. Joseph and L. Preziosi, Addendum to the paper “Heat waves”. Rev. Modern Phys. 62 (1990) 375-391.

    Google Scholar 

  14. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited. Continuum Mech. Thermodyn. 5 (1993) 3-50.

    Google Scholar 

  15. D. S. Chandrasekharaiah, Thermoelasticity with second sound: A review. Appl. Mech. Rev. 39 (1986) 355-376.

    Google Scholar 

  16. B. D. Coleman, M. Fabrizio and D. R. Owen, On the thermodynamics of second sound in dielectric crystals. Arch. Rational Mech. Anal. 80 (1982) 135-158.

    Google Scholar 

  17. A. Morro and T. Ruggeri, Non-equilibrium properties of solids obtained from second-sound measurements. J. Phys. C: Solid State Phys. 21 (1988) 1743-1752.

    Google Scholar 

  18. T. Ruggeri, A. Muracchini and L. Seccia, Continuum approach to phonon gas and shape changes of second sound via shock waves theory. Il Nuovo Cimento 16D (1994) 15-44.

    Google Scholar 

  19. J. L. Martinez, F. J. Bermejo, M. García-Hernández, F. J. Mompeán, E. Enciso, and D. Martín, J. Phys.: Condens. Matter 3 (1991) 4075-4087.

    Google Scholar 

  20. S. C. Cowin, The theory of polar fluids. Advs. Appl Mech. 14 (1974) 279-347.

    Google Scholar 

  21. M. E. Erdogan, Dynamics of polar fluids. Acta Mech. 15 (1972) 33-253.

    Google Scholar 

  22. J. L. Bleustein and A. E. Green, Dipolar fluids. Int. J. Eng. Sci. 5 (1967) 323-340.

    Google Scholar 

  23. A. E. Green and P. M. Naghdi, A Note on dipolar inertia. Quart. Appl. Math. 28 (1970) 458-460.

    Google Scholar 

  24. T. Ariman, M. A. Turk and N. D. Sylvester, Microcontinuum fluid mechanics-A review. Int. J. Eng. Sci. 11 (1973) 905-930.

    Google Scholar 

  25. G. S. Guram, Flow of a dipolar fluid due to suddenly accelerated flat plate. Acta Mech. 49 (1983) 133-138.

    Google Scholar 

  26. H. Schlichting, Boundary Layer Theory. 4th ed., New York: McGraw-Hill (1960) 647 pp.

    Google Scholar 

  27. K. S. Sran, Heat transfer in a dipolar flow through a porous channel. J. Franklin Inst. 324 (1987) 303-317.

    Google Scholar 

  28. B. Straughan, Stability of a layer of dipolar fluid heated from below. Math. Meth. Appl. Sci. 9 (1987) 5-45.

    Google Scholar 

  29. P. M. Jordan, Nonclassical Thermal Effects on Dipolar Fluid Flow. Masters of Science thesis, Department of Mathematics, University of New Orleans, New Orleans, Louisiana, USA (1996) 64 pp.

    Google Scholar 

  30. P. Puri and P. M. Jordan, Wave structure in Stokes' second problem for a dipolar fluid with nonclassical heat conduction. To appear in Acta Mech.

  31. I. Müller and T. Ruggeri, Extended thermodynamics. In: C. Truesdell (ed.) Springer Tracts in Natural Philosophy, vol. 37. New York: Springer-Verlag (1993) 230 pp.

    Google Scholar 

  32. A. Erdélyi, (ed.) Tables of Laplace transforms. In: Bateman Manuscripts Project, vol. I, New York: McGraw-Hill (1954) 391 pp.

  33. B. A. Boley, Discontinuities in integral-transform solutions. Quart. Appl. Math. 19 (1962) 273-284.

    Google Scholar 

  34. P. Chadwick and B. Powdrill, Applications of the Laplace transform method to wave motions involving strong discontinuities. Proc. Camb. Phil. Soc. 60 (1964) 313-324.

    Google Scholar 

  35. C. Truesdell and R. A. Toupin, The classical field theories. In: S. Flügge (ed.), Handbuch der Physik, vol. III/l. Berlin: Springer-Verlag (1960) pp. 226-793.

    Google Scholar 

  36. W. Prager, Discontinuous fields of plastic stress and flow. In: Proc. 2nd U.S. Cong. Appl. Mech. Ann Arbor, Michigan, USA (1954) pp. 21-32.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, P., Jordan, P.M. Stokes' first problem for a dipolar fluid with nonclassical heat conduction. Journal of Engineering Mathematics 36, 219–240 (1999). https://doi.org/10.1023/A:1004454227370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004454227370

Navigation