Skip to main content
Log in

Effect of martensitic transformation in Ti–15 at %V β-phase particles on lamellar boundary decohesion in γ-TiAl Part II Finite element analysis of crack-bridging phenomenon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The commercial finite element package ABAQUS has been used to analyse the crack bridging process by Ti-15 at%V β-phase particles dispersed in γ-TiAl matrix in the presence of particle–matrix decohesion. Both the particle–matrix decohesion potential and the β-phase materials constitutive relations are found to have a major effect on the ductility, fracture toughness and failure mode of the β–γ two-phase material. The interface potential is found to primarily affect the distribution of the normal interface strength ahead of the advancing interfacial crack and the mode (gradual versus sudden) of decohesion. The β-phase materials constitutive relations are found to influence the location of nucleation of the interfacial cracks and, in turn, the mode of decohesion. A metastable β-phase that can plastically deform at low stress levels by undergoing a stress-assisted martensitic transformation, but experience a high rate of strain hardening is found to give rise to the largest levels of ductility and fracture toughness is the β–γ two-phase material. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Sigl and H. E. Exner, Metall. Trans. 18A (1987) 1299.

    Google Scholar 

  2. M. S. Newkirk, A. W. Urqhart and H. R. Zwicker, J. Mater. Res. 1 (1986) 81.

    Google Scholar 

  3. I. Aksay and A. Pysik, “Ceramic microstructures: role of interfaces, edited by J. A. Pask and A. G. Evans, (Plenum Press, New York, 1987).

    Google Scholar 

  4. A. G. Evans and R. M. Mcmeeking, Acta Metall. 34 (1986) 2435.

    Google Scholar 

  5. B. Budiansky, J. Amazigo and A. G. Evans, J. Mech. Phys. Solids 26 (1989) 364.

    Google Scholar 

  6. B. Budiansky, Micromechanics II, Proceedings of the Tenth US Congress on Applied Mechanics (1986).

  7. A. G. Evans and R. M. Cannon, Acta Metall. 34 (1986) 761.

    Google Scholar 

  8. G. B. Olson, in “Innovations in ultra-high strength steel technology”, edited by G. B. Olson and E. S. Wright, 3rd Sagamore Army Materials Research Conference, Lake George, NY August 30-September 3 (1987) p. 3.

  9. M. Grujicic and P. Dang, Mater. Sci. Engng A224 (1997) 187.

    Google Scholar 

  10. M. Grujicic and N. Sankaran, Int. J. Solids Struct. 34 (1997) 4421.

    Google Scholar 

  11. Idem, ibid 83 (1997) 337.

    Google Scholar 

  12. A. Needleman, J. Appl. Mech. 54 (1987) 525.

    Google Scholar 

  13. R. E. Cech and D. Turnbull, Trans. AIME 206 (1956) 124.

    Google Scholar 

  14. Abaqus Theory Manual, Verson 5.4, Hibbitt, Karlsson and Sorensen, Inc., Providence, RI (1995).

    Google Scholar 

  15. M. Grujicic and S. G. Lai, J. Mater. Sci. This is Part I, JM 70879.

  16. G. Bozzolo, J. Ferrante and J. R. Smith, Scripta Metall. Mater. 25 (1991) 1927.

    Google Scholar 

  17. X.-P Xu and A. Needleman, Modeling Simul. Mater. Sci Engng 1 (1993) 111.

    Google Scholar 

  18. S. Socrate, PhD thesis MIT, Cambridge, MA (1996).

    Google Scholar 

  19. R. D. Kreig and D. B. Kreig, J. Pressure Vessel Technol. ASME 99 (1977) 510.

    Google Scholar 

  20. Y.-W. Kim and S. Krishnamurthy, J. Metals 43 (1991) 149.

    Google Scholar 

  21. L. E. Murr, K. P. Staudhammer and S. S. Kecker, Metall. Trans. 13A (1982) 627.

    Google Scholar 

  22. H. Conrad and R. Jones, in “The science, technology and application of titanium”, edited by R. I. Jaffe and N. E. Promisel (Pergamon Press, 1970). pp. 81-501.

  23. A. Zavaliangos and L. Anand, Int. J. Num. Mech. Engng 19 (1990) 267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Lai, S.G. Effect of martensitic transformation in Ti–15 at %V β-phase particles on lamellar boundary decohesion in γ-TiAl Part II Finite element analysis of crack-bridging phenomenon. Journal of Materials Science 33, 4401–4415 (1998). https://doi.org/10.1023/A:1004441129440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004441129440

Keywords

Navigation