Skip to main content
Log in

Modelling the creep rates of eutectic Bi–Sn solder using the data from its constitutive phases

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Constitutive equations obtained from the creep behaviour of 99.9 wt % pure Bi and from Sn–10 wt % Bi single-phase solid solution are applied in the continuum mechanics creep model of Tanaka et al. [1] to predict the creep behaviour of a eutectic Bi–42 wt % Sn alloy. At low stresses, Bi is the load bearing phase, while at high stresses, Sn–10 wt % Bi is the load bearing phase. The continuum mechanics creep model is able to predict the shape of the steady-state versus strain curves. However, the model predicts creep rates that are generally lower than the data. This inconsistency may be caused by a phase boundary sliding contribution to the creep rate, which is unaccounted for by the model. Creep tests done on Sn–42 wt % Bi samples having various microstructural morphologies support this conclusion, where the more spheroidized microstructure creeps faster. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tanaka, T. Sakaki and H. Iizuka, Acta Metall. 39 (1991) 1549.

    Google Scholar 

  2. G. D. Schmeelk, Master Thesis, Rensselaer Polytechnic Institute (1993).

  3. C. H. Raeder, G. D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L. E. Felton, R. W. Messler, Jr, D. B. Knorr and D. Lee, in Proceedings of the 16th IEEE/CPMT IEMT Symposium, 12-14 September 1994, La Jolla, CA, p. l.

  4. J. Weertman, J. Appl. Phys. 28 (1957) 362.

    Google Scholar 

  5. Idem, Trans. Met. Soc. AIME 218 (1960) 207.

    Google Scholar 

  6. Idem, J. Appl. Phys. 28 (1957) 1185.

    Google Scholar 

  7. S. L. Robinson and O. D. Sherby, Acta Metall. 17 (1969) 109.

    Google Scholar 

  8. J. Weertman, in “Rate Processes in Plastic Deformation”, edited by J. C. M. Lui and A. K. Mukherjee (American Society for Metals, Metals Park, OH, 1975) p. 315.

    Google Scholar 

  9. T. G. Langdon, in “Strength of Metals and Alloys” Proceedings of the 6th International Conference 1982, p. 1105.

  10. P. Yavari, F. A. Mohamed and T. G. Langdon, Acta Metall. 29 (1981) 1495.

    Google Scholar 

  11. D. L. Mcdanels, R. A. Signorelli and J. W. Weeton, ASTM STP 427 (American Society for Testing Materials, Philadelphia, PA, 1967) p. 124.

    Google Scholar 

  12. K. Cho and J. Gurland, Met. Trans. 19 (1998) 2027.

    Google Scholar 

  13. M. H. Poech and H. F. Fischmeister, Acta Metall. 40 (1992) 487.

    Google Scholar 

  14. K. S. Ravichandran, ibid. 42 (1994) 1113.

    Google Scholar 

  15. S. Ankem and H. Margolin, Met. Trans. 13A (1982) 595.

    Google Scholar 

  16. K. Tanaka and T. Mori, Acta Metall. 18 (1970) 931.

    Google Scholar 

  17. K. Tanaka, K. Wakashima and T. Mori, J. Mech. Phys. Solids 21 (1973) 207.

    Google Scholar 

  18. J. D. Eshelby, Proc. R. Soc. A241 (1957) 376.

    Google Scholar 

  19. Idem, ibid. A252 (1959) 561.

  20. T. Mori and K. Tanaka, Acta Metall. 21 (1973) 571.

    Google Scholar 

  21. T. Mura and T. Mori, Micromechanics 23 (1976).

  22. T. Mura, “Micromechanics of Defects in Solids” (Martinus Nijhoff, The Hague, 1982).

    Google Scholar 

  23. K. Tanaka and T. Mori, Acta Metall. 18 (1970) 931.

    Google Scholar 

  24. W. P. Ellis and N. H. Nachtrieb, J. Appl. Phys. 10 (1969) 472.

    Google Scholar 

  25. B. M. Drapkin and V. K. Kononenko, Izvestia Akademii Nauk SSSR Metally 2 (1987) 168.

    Google Scholar 

  26. E. L. Holmes and W. C. Winegard, Trans. Met. Soc. AIME 224 (1962) 945.

    Google Scholar 

  27. C. H. Raeder, D. Mitlin and W. Yang, in Proceedings of the Seventh International SAMPE Electronics Conference, Parsippany, NJ, 20–23 June, 1994, p. 355

  28. S. Pattanaik and V. Raman, “Materials Developments in Microelectronics Packaging: Performance and Reliability”, Conference Proceedings, edited by P. J. Singh (ASM International, 1991) p. 241.

  29. D. H. Avery and W. A. Backofen, Trans. ASM 58 (1965) 551.

    Google Scholar 

  30. T. H. Alden, J. Australian Inst. Metals 14 (1969) 207.

    Google Scholar 

  31. M. A. Clark and T. H. Alden, Acta Metall. 21 (1973) 1195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeder, C.H., Mitlin, D. & Messler, R.W. Modelling the creep rates of eutectic Bi–Sn solder using the data from its constitutive phases. Journal of Materials Science 33, 4503–4508 (1998). https://doi.org/10.1023/A:1004439931547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004439931547

Keywords

Navigation