Skip to main content
Log in

Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sintering behaviour of a number of commercially produced 8 mol% yttria-stabilized zirconia powders has been studied. The effect of different sintering regimes on the density and microstructure of the sintered ceramic was determined using density measurements, scanning electron microscopy (SEM) and dilatometry. The chemical homogeneity, particle size and the morphology of the as-received powder were related to the sintering behaviour of the different commercial powders. Powders prepared via a route which involved a spray-drying step sintered more readily than those prepared without a spray-drying step. Plasma-derived powders did not sinter to as high an apparent density as co-precipitated powders. The effect of sample density on the ionic conductivity of sintered YSZ ceramics was studied using a.c. impedance spectroscopy. This technique allowed separation of the bulk and grain-boundary components, enabling clear intepretation of the effects of sample porosity of the conduction pathways. Ceramics prepared from the three different powders achieved a bulk ionic conductivity of ∼16 S cm-1 at 1000 °C for sintered densities of 95% or greater. The results obtained are compared to values reported for a variety of other commercial powders. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Hirschenhofer, IEEE Aerospace Electron Systems Mag. 12 (1997) 23.

    Google Scholar 

  2. R. J. Brook, in “Advances in Ceramics”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, 1981) p. 272.

    Google Scholar 

  3. T. Okubo and H. Nagamoto, J. Mater. Sci. 30 (1995) 749.

    Google Scholar 

  4. M. Kleitz, H. Bernard, E. Fernandez and E. Schouler, in “Advances in Ceramics”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, 1981) p. 310.

    Google Scholar 

  5. E. J. L. Schouler, N. Mesbahi and G. Vitter, Solid State Ionics 9/10 (1983) 989.

    Google Scholar 

  6. S. P. S. Badwal and J. Drennan, J. Mater. Sci. 22 (1987) 3231.

    Google Scholar 

  7. L. Dessemond, J. Guindet, A. Hammou and M. Kleitz, in “Proceedings of the 2nd International Symposium on SOFC'”, edited by F. Grosz, P. Zegers, S. C. Singhal and O. Yamamoto (Office for Official Publications of the European Communities, Brussels, Belgium, 1991) 409

    Google Scholar 

  8. G. P. Dransfield, K. A. Fothergill and T. A. Egerton, in “Euro-ceramics”, Vol. 1, edited by G. de With, R. Terpstia and R. Metselaar (Elsevier, London, 1989) p. 275.

    Google Scholar 

  9. PDF Card no. 30-1468, ICDD, Newton Square, A, USA (1980).

  10. M. I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443.

    Google Scholar 

  11. J. T. S. Irvine, D. C. Sinclair and A. R. West, Adv. Mater. 2(3) (1990) 132.

    Google Scholar 

  12. K. Masters, Am. Ceram. Soc. Bull. 73(1) (1994) 63.

    Google Scholar 

  13. G. S. A. M. Theunissen, PhD thesis, University of Twente, Enschede, The Netherlands, (1991).

    Google Scholar 

  14. A. Samdi, B. Durand, M. Roubin, A. Daoudi, M. Taha, J. Paletto and G. Fantozzi, J. Eur. Ceram. Soc. 12 (1993) 353.

    Google Scholar 

  15. M. A. C. G. van de Graaf, J. H. Ter maat and A. J. Burggraaf, J. Mater. Sci. 20 (1985) 1407.

    Google Scholar 

  16. A. Roosen, Adv. Ceram. Mater. 3(2) (1988) 131.

    Google Scholar 

  17. D. E. Niesz, R. B. Bennet and M. Snyhder, Am Ceram. Soc. Bull. 51 (1972) 677.

    Google Scholar 

  18. J. L. Shi, Z. X. Lin, W. J. Qian and T. S. Yen, J. Eur. Ceram. Soc. 13 (1994) 265.

    Google Scholar 

  19. W. S. Young and I. B. Cutler, J. Am. Ceram. Soc. 53 (1970) 659.

    Google Scholar 

  20. S. Lawson, PhD thesis, University of Sunderland (1993).

  21. G. S. A. M. Theunissen, A. J. A. Winnubst and A. J. Burggraaf, J. Eur. Ceram. Soc. 11 (1993) 315.

    Google Scholar 

  22. T. K. Gupta, Sci. Sint. 10 (1979) 205.

    Google Scholar 

  23. D. D. Upadhyaya, T. R. G. Kutty and C. Ganguly, in “Science and Technology of Zirconia V” edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, PA, USA, 1993) p. 310.

    Google Scholar 

  24. I. R. Gibson, E. E. Lachowski, J. T. S. Irvine and G. P. Dransfield, Solid State Ionics 72 (1994) 265.

    Google Scholar 

  25. I. R. Gibson, G. P. Dransfield and J. T. S. Irvine, J. Eur. Ceram. Soc. 18 (1998) 661.

    Google Scholar 

  26. J. A. Kilner and B. C. H. Steels, in “Non-stoichiometric Oxides”, edited by O. T. Sørensen (Academic Pres, New York 1981) p. 233.

    Google Scholar 

  27. M. V. Inozemtsev, M. V. Perfil'ev and A. S. Lipilin, Elektrokhimiya 10 (1974) 147.

    Google Scholar 

  28. M. J. Verkerk, B. J. Middelhuis and A. J. Burggraaf, Solid State Ionics 6 (1982) 159.

    Google Scholar 

  29. H. Bernard, PhD thesis, Grenoble, France (1980).

    Google Scholar 

  30. M. Kleitz, C. Pescher and L. Dessemond, in “Science and Technology of Zirconia V, edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, PA, USA, 1993) p. 593.

    Google Scholar 

  31. B. Boukamp, Equivalent Circuit Ver 3.99, University of Twente, The Netherlands (1992).

    Google Scholar 

  32. R. Maenner, E. Ivers-tiffÉe, W. Wersing and W. Kleinlein, in “Proceedings of the 2nd International Symposium on SOFC'”, edited by F. Grosz, P. Zegers, S. C. Singhal and O. Yamamoto (Office for Official Publications of the European Communities, Brussels, Belgium, 1991) 409

    Google Scholar 

  33. F. T. Ciacchi, K. M. Crane and S. P. S. Badwal, Solid State Ionics 73 (1994) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, I.R., Dransfield, G.P. & Irvine, J.T.S. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. Journal of Materials Science 33, 4297–4305 (1998). https://doi.org/10.1023/A:1004435504482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004435504482

Keywords

Navigation