Skip to main content
Log in

An Upper Bound Kinematic Approach to the Shakedown Analysis of Structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A reduced but equivalent form of Koiter's upper bound kinematic theorem, which does not involve time integrals, is deduced, provided that the plastic strain rates at every point of a structure are confined to a certain number of possible directions in the strain space. Generally it yields an upper bound on the shakedown factor, which improves upon the previous one by Pham and Stumpf.Sommario. Una forma ridotta ma equivalente del teorema cinematica di Koiter sul limite superiore, che non coinvolge integrali temporali, viene dedotta sotto la condizione che le velocità di deformazione plastica in ogni punto della struttura siano confinate ad un certo numero di possibili direzioni nello spazio delle deformazioni. Generalmente, ciò produce un limite superiore sul fattore di shakedown, che migliora quello precedente di Pham e Stumpf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pham, D.C. and Stumpf, H., 'Kinematical approach to shakedown analysis of some structures', Q. Appl. Math. LII (1994) 707–719.

    Google Scholar 

  2. Melan, E., 'Zur Plastizität des räumlichen Kontinums', Ing. Arch. 9 (1938) 116.

    Google Scholar 

  3. Symonds, P.S. and Neal, B.G., 'Recent progress in the plastic methods of structural analysis', J. Franklin Inst. 252 (1952) 383–407 and 469–592.

    Google Scholar 

  4. Prager, W., 'Shakedown in elastic-plastic media subjected to cycles of load and temperature', Symposium Plasticitΰ nella scienza delle costruzioni. Zanichelli, Bologna, 1957.

  5. Koiter, W.T., 'General theorems for elastic-plastic solids', In: I.N. Sneddon and R. Hill (Eds), Progress in Solids Mechanics, North-Holland, Amsterdam, 1963, pp. 165–221.

    Google Scholar 

  6. Gavarini, C. 'Sul rientro in fase elastica delle vibrazioni forzate elasto-plastiche', Giornale del Genio Civile, 107 (1969) 251.

    Google Scholar 

  7. Corradi, L. and Maier, G., 'Dynamic inadaptation theorem for elastic-perfectly plastic continua', J. Mech. Phys. Solids 22 (1974) 401–413.

    Google Scholar 

  8. Martin, J.B., Plasticity: Fundamentals and General Results, MIT Press, Cambridge, MA, 1975.

    Google Scholar 

  9. Ceradini, G., 'Dynamic shakedown in elastic-plastic bodies', ASCE J. Engng. Mech. Div. 106 (1980) 481.

    Google Scholar 

  10. Polizzotto, C., 'New developments in the theory of dynamic shakedown', In: A. Sawcuk and G. Bianchi (Eds), Plasticity Today Elsevier, 1985.

  11. König, A., Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam 1987.

    Google Scholar 

  12. Pham, D.C., 'Extended shakedown theorems for elastic plastic bodies under quasiperiodic dynamic loading', Proc. R. Soc. London A 439 (1992) 649–658.

    Google Scholar 

  13. Pham, D.C., 'Dynamic shakedown and a reduced kinematic theorem', Int. J. Plasticity 12 (1996) 1055–1068.

    Google Scholar 

  14. Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.

    Google Scholar 

  15. Drucker, D.C., 'Plastic design methods, advantage and limitation', Trans. Soc. Nav. Arch. Eng. 65 (1958) 172.

    Google Scholar 

  16. Johansen, W., Yield-line Theory, Cement and Concrete Association, London, 1962.

    Google Scholar 

  17. Hodge, P.G. Jr., Limit Analysis of Rotationally Symmetric Plates and Shells, Prentice-Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  18. Save, M.A. and Massonnet C.E., Plastic Analysis of Plates, Shells and Disks, North-Holland, Amsterdam, 1972.

    Google Scholar 

  19. Johnson, W. and Mellor, P.B., Engineering Plasticity, Van Nostrand Reinhold, London, 1973.

    Google Scholar 

  20. Lubliner, J., Plasticity Theory, Macmillan, New York, 1990.

    Google Scholar 

  21. Gokhfeld, D.A., 'Some problems of shakedown of plates and shells', Proc. 6th Soviet Conf. Plates Shells, Nauka, 1966, pp. 284–291.

  22. Sawczuk, A., 'Evaluation of upper bounds to shakedown loads of shells', J. Mech. Phys. Solids 17 (1969) 291–301.

    Google Scholar 

  23. Ponter, A.R.S. and Karadeniz, S., 'An extended shakedown theory for structures that suffer cyclic thermal loading', ASME J. Appl. Mech. 52 (1985) 877.

    Google Scholar 

  24. Pham, D.C., 'Shakedown analysis for trusses and frames', ASME J. Appl. Mech. 64 (1997) 415–419.

    Google Scholar 

  25. Pham, D.C., 'Evaluation of shakedown loads for plates', Int. J. Mech. Sci. 39 (1997) 1415–1422.

    Google Scholar 

  26. Pham, D.C., 'Reduced forms of shakedown kinematic theorem for elastic-perfectly plastic bodies', Proc. R. Soc. London A 453 (1997) 2259–2269.

    Google Scholar 

  27. Corradi, L. and Zavelani, A., 'Alinear programming approach to shakedownanalysis of structures', Comput. Math. Appl. Mech. Engng. 3 (1974) 37.

    Google Scholar 

  28. Maier, G. and Munro, J., 'Mathematical programming applications to engineering plastic analysis', Appl. Mech. Rev. 35 (1982) 1631–1643.

    Google Scholar 

  29. Kamenjarzh, J. and Weichert, D., 'On kinematic upper bounds for the safety factor in shakedown theory', Int. J. Plasticity 8 (1992) 827–837.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinh, P.D. An Upper Bound Kinematic Approach to the Shakedown Analysis of Structures. Meccanica 34, 49–56 (1999). https://doi.org/10.1023/A:1004427528433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004427528433

Navigation