Skip to main content
Log in

Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemical reactions conducted in solution are known to generate solid precursors containing molecular units that help in the formation of high-temperature phases. The structural units are created by controlling the molecular environments in solution, and as a result, phases that normally form and are stable at high temperatures can be synthesized at low or moderately elevated temperatures. However, the application of chemical approaches for synthesizing phases that normally form at high pressure are relatively unknown. In this work, a simple room-temperature aqueous chemical precipitation route has been used to synthesize the high-pressure cubic spinel modification of ZnIn2S4. A solution coordination model (SCM) has been proposed to explain the formation of the high-pressure phase. The crystallinity, phase purity and phase transformation characteristics of the cubic phase have been studied using X-ray diffraction (XRD) including Rietveld refinement, transmission electron microscopy (TEM), and Auger electron microscopy (AEM). Results of these studies are discussed in the light of a proposed solution coordination model (SCM). © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Grilli, M. Guzzi, E. Camerlenghi and F. Pro, Phys. Status Solidi (a) 90 (1985) 691.

    Google Scholar 

  2. D. Crandles, S. Charbonneau and E. Fortin, Solid State Commun. 56 (1985) 367.

    Google Scholar 

  3. A. Bosacchi, B. Bosacchi, S. Franchi and L. Hernandez, ibid. 13 (1973) 1805.

    Google Scholar 

  4. A. N. Georgobiani, Z. P. Ilyuknina and I. M. Tiginyanu, Sov. Phys. Semicond. 16(2) (1982) 231.

    Google Scholar 

  5. S. Shionoya and A. Ebina, J. Phys. Soc. Jpn 19(7) (1964) 1142.

    Google Scholar 

  6. N. Romeo, A. Dallaturca, R. Braglia and G. Sberveglieri, Appl. Phys. Lett. 22(1) (1973) 21.

    Google Scholar 

  7. S. Morca, C. Paorici and N. Romeo, J. Appl. Phys. 42(5) (1971) 2061.

    Google Scholar 

  8. J. A. Beun, R. Nitsche and M. Lichtensteiger, Physica 26 (1960) 647.

    Google Scholar 

  9. B. F. Bilenkii, F. G. Donika, V. F. Zhitar, V. N. Kobzarenko and A. K. Filatova, Phys. Status Solidi (a) 59 (1980) 109.

    Google Scholar 

  10. F. G. Donika, S. I. Radautsan, S. A. Semiletov, T. V. Donika, I. G. Mustya and V. F. Zhitar, Sov. Phys. Cryst. 15(4) (1971) 695.

    Google Scholar 

  11. F. Lappe, Niggli, R. Nitsche and J. G. White, Z. Krist. 117 (1962) 146.

    Google Scholar 

  12. K. J. Range, W. Becker and A. Weiss, Z. Naturforsch. 24b (1969) 811.

    Google Scholar 

  13. N. Berand and K.-J. Range, J. Alloys Compounds 241 (1996) 29.

    Google Scholar 

  14. W. K. Unger, H. Neuth, J. C. Irwin and H. Pink, Phys. Status Solidi (a) 46 (1978) 81.

    Google Scholar 

  15. R. Hsu, P. N. Kumta and T. P. Feist, J. Mater. Sci. 30 (1995) 3123.

    Google Scholar 

  16. P. N. Kumta, R. E. Hackenberg P. McMichael and W. C. Johnson, Mater. Lett. 20 (1994) 355.

    Google Scholar 

  17. X. Li and T. A. King, in “Better Ceramics through Chemistry VI,” edited by A. K. Cheetam, C. J. Brinker, M. L. McCarthy and C. Sanchez, Proceedings of the Symposium of Materials Research Society, Pittsburgh, Vol. 34 (1994) p. 541.

  18. P. N. Kumta and M. A. Sriram, J. Mater. Sci. 28 (1993) 1097.

    Google Scholar 

  19. M. A. Sriram, P. N. Kumta and E. I. Ko, Chem. Mater. 7(5) (1995) 859.

    Google Scholar 

  20. M. A. Sriram and P. N. Kumta, Mater. Sci. Eng. B 33 (1995) 140.

    Google Scholar 

  21. Idim, J. Am. Ceram. Soc. 77(5) (1994) 1381.

    Google Scholar 

  22. A. Selvaraj, S. Komavneni and R. Roy, ibid. 73(12) (1990) 3663.

    Google Scholar 

  23. G. Burley, Am. Mineral. 48 (1963) 1266.

    Google Scholar 

  24. A. J. Majumdar and R. Roy, J. Phys. Chem. 63 (1959) 1858.

    Google Scholar 

  25. Y.-I. Kim and F. Izumi, J. Ceram. Soc. Jpn 102 (1994) 401.

    Google Scholar 

  26. F. Izumi, in “The Rietveld Method,” edited by R. A. Young, (Oxford University Press, Oxford, 1993) Ch. 13.

    Google Scholar 

  27. P. N. Kumta, P. P. Phule and S. H. Risbud, Mater. Lett. 5(10) (1987) 401.

    Google Scholar 

  28. R. A. Young and E. Prince, J. Appl. Crystallogr. 15 (1982) 357.

    Google Scholar 

  29. A. J. Carty and D. G. Tuck, in “Progress in Inorganic Chemistry”, vol. 19, edited by S. J. Lippard (Wiley, New York, 1975) 243.

    Google Scholar 

  30. D. G. Tuck, in “MTP International Review of Science”, Vol. 1, Inorganic Chemistry Series 2 edited by M. F. Lappert (University Park Press, Baltimore, 1975) p. 311.

    Google Scholar 

  31. A. Pidcock, ibid. p. 281.

  32. A. Fratiello, R. F. Lee, V. M. Nishida and R. E. Schuster, J. Chem. Phys. 48 (1968) 3705.

    Google Scholar 

  33. T. H. Cannon and R. E. Richards, Trans. Farad. Soc. 62 (1966) 1378.

    Google Scholar 

  34. G. E. Glass, W. B. Schwabacher and R. S. Tobias, Inorg. Chem. 7(12) (1968) 471.

    Google Scholar 

  35. R. H. Prince, in “Comprehensive Coordination Chemistry: the synthesis, reactions, properties and applications of coordination compounds”, edited by Sir G. Wilkinson, executive eds. R. D. Gillard and J. A. McCleverty (Pergamon Press, 1987) Vol. 5, p. 925.

  36. V. V. Kuznetsov, V. N. Trostin and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved Khim. Khim. Teknol. 24 (1981) 709 (Chem. Abst. (1981) 95, 157663).

    Google Scholar 

  37. W. van Doorne and T. P. Dirkse, J. Electrochem. Soc. 122 (1975) 1.

    Google Scholar 

  38. T. Yamaguchi and H. Ohtaki, Bull. chem. Soc. Jpn 51 (1978) 3227.

    Google Scholar 

  39. F. Jellinek, in “Inorganic Sulfur Chemistry,” edited by G. Nickless, Published by Elsevier, New York (1968) p. 670

    Google Scholar 

  40. T. R. Anthony, in “Diamond, SiC and Related Wide Band-Gap Semiconductors,” MRS Symposium Proceedings, Fall Meeting 1989, Vol. 162, edited by J. T. Glass, R. Messier and N. Fujimori, Materials Research Society, Pittsburgh, p. 61.

    Google Scholar 

  41. “International Table for Crystallography,” Edited by Theo Hahn, Vol. A (Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, M.A., McMichael, P.H., Waghray, A. et al. Chemical synthesis of the high-pressure cubic-spinel phase of ZnIn2S4. Journal of Materials Science 33, 4333–4339 (1998). https://doi.org/10.1023/A:1004424629498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004424629498

Keywords

Navigation