Skip to main content
Log in

Optimal fluid injection strategies for in situ mineral leaching in two-dimensions

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Bartlett, Solution Mining. Philadelphia: Gordon and Breach (1992) 276pp.

    Google Scholar 

  2. J. E. Pahlman, Evaluation of the potential for in situ leach mining of domestic manganese ores. In: S. A. Swan and K. R. Coyne (eds.), In Situ Recovery of Minerals II. New York: Engineering Foundation (1994) 299-321.

    Google Scholar 

  3. S. Kubo, Development of gold ore leaching method by iodine. In: S. A. Swan and K.R. Coyne (eds.), In Situ Recovery of Minerals II. New York: Engineering Foundation (1994) 405-431.

    Google Scholar 

  4. G. Pantelis and A. I. M. Ritchie, Rate-limiting factors in dump leaching of pyritic ores. Appl. Math. Modelling 16 (1992) 553-560.

    Google Scholar 

  5. J. W. Crockett, Permitting and closure of an in situ minerals recovery operation: an attorney's perspective. In: S. A. Swan and K. R. Coyne (eds.), In Situ Recovery of Minerals II. New York: Engineering Foundation (1994) 21-43.

    Google Scholar 

  6. D. R. Tweeton, J. C. Hanson, M. J. Friedel and L. J. Dahl, Field tests of geophysical methods for monitoring the flow pattern of leach solution. In: S.A. Swan and K. R. Coyne (eds.), In Situ Recovery of Minerals II. New York: Engineering Foundation (1994) 179-199.

    Google Scholar 

  7. R. D. Schmidt, D. Barley and M. J. Friedel, Dynamic influences on hydraulic conductivity during in situ copper leaching. In: S. A. Swan and K. R. Coyne (eds.), In Situ Recovery of Minerals II. New York: Engineering Foundation (1994) 259-286.

    Google Scholar 

  8. E. Aharonov, J. A. Whitehead, P. B. Kelemen and M. Spiegelman, Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100,no B10 (1995) 20, 433-20, 450.

    Google Scholar 

  9. G. Lapidus, Mathematical modelling of metal leaching in nonporous minerals. Chem. Eng. Sci. 47 (1992) 1933-1941.

    Google Scholar 

  10. J. N. Dewynne, A. C. Fowler and P. S. Hagan, Multiple reaction fronts in the oxidation-reduction of iron-rich uranium ores. SIAM J. Appl. Math. 53 (1993) 971-989.

    Google Scholar 

  11. L. K. Forbes, Progress toward a mining strategy based on mineral leaching with secondary recovery. Appl. Math. Modelling 20 (1996) 16-25.

    Google Scholar 

  12. M. K. Hubbert, The Theory of Ground-water Motion and Related Papers. New York: Hafner (1969) 310pp.

    Google Scholar 

  13. A. Verruijt, Theory of Groundwater Flow. London: MacMillan (1970) 190pp.

    Google Scholar 

  14. O. D. L. Stack, Groundwater Mechanics. New Jersey: Prentice Hall (1989) 732pp.

    Google Scholar 

  15. J. Bear, Dynamics of Fluids in Porous Media. New York: American Elsevier (1972) 764pp.

    Google Scholar 

  16. M. Muskat, The Physical Principles of Oil Production. New York: McGraw-Hill (1949) 922pp.

    Google Scholar 

  17. S.K. Lucas, J. R. Blake and A. Kucera, A boundary-integral method applied to water coning in oil reservoirs. J. Austral. Math. Soc. Ser. B 32 (1991) 261-283.

    Google Scholar 

  18. S. K. Lucas and A. Kucera, A boundary integral method applied to the 3D water coning problem. Phys. Fluids 8 (1996) 3008-3022.

    Google Scholar 

  19. H. Zhang and G. C. Hocking, Withdrawal of layered fluid through a line sink in a porous medium. J. Austral. Math. Soc. Ser. B 38 (1996) 240-254.

    Google Scholar 

  20. H. Zhang, G. C. Hocking and D. A. Barry, An analytical solution for critical withdrawal of layered fluid through a line sink in a porous medium. J. Austral. Math. Soc. Ser. B 39 (1997) 271-279.

    Google Scholar 

  21. H. Zhang and G. C. Hocking, Axisymmetric flow in an oil reservoir of finite depth caused by a point sink above an oil-water interface. J. Eng. Math. 32 (1997) 365-376.

    Google Scholar 

  22. C.-T. Tan and G. M. Homsy, Viscous fingering with permeability heterogeneity. Phys. Fluids A 4 (1992) 1099-1101.

    Google Scholar 

  23. M. B. Butts and K. H. Jensen, Effective parameters for multiphase flow in layered soils. J. Hydrology 183 (1996) 101-116.

    Google Scholar 

  24. M. J. Martinez and D. F. Mctigue, A boundary integral method for steady flow in unsaturated porous media. Int. J. Numer. Analytical Meth. in Geomechanics 16 (1992) 581-601.

    Google Scholar 

  25. L. K. Forbes, A. M. Watts and G. A. Chandler, Flow fields associated with in situ mineral leaching. J. Austral. Math. Soc. Ser. B 36 (1994) 133-151.

    Google Scholar 

  26. L. M. Milne-Thomson, Theoretical Hydro dynamics, 5th edition. London: MacMillan (1968) 743pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, L.K., McCue, S.W. Optimal fluid injection strategies for in situ mineral leaching in two-dimensions. Journal of Engineering Mathematics 36, 185–206 (1999). https://doi.org/10.1023/A:1004406311441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004406311441

Navigation