Skip to main content
Log in

Characterization of Nicalon fibres with varying diameters: Part II Modified Weibull distribution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diameters vary significantly in a tow of commercial NicalonTM fibres, which is one of the most attractive ceramic reinforcements for structural composites. It was found that the strength distribution of Nicalon fibres could not be adequately characterized using either single- or bi-modal Weibull distribution. A recently proposed modified Weibull distribution can account for the effect of varying diameter in the characterization of fibre strength. To verify the validity of the modified Weibull distribution, comprehensive mechanical testing and fractographic studies have been conducted on Nicalon SiC fibres with diameters varying from 8 to 22 μm. The experimental results have been reported in Part I. Part II of this paper further modifies the derivation of the modified Weibull distribution to yield a relationship which is similar in form, but soundly based on experimental findings. Factors considered in the modified Weibull distribution include the dependence of fracture toughness and flaw density on fibre diameter, both of which may vary with fibre diameter, as reported in Part I. Comparison with experimental data shows that the current modified Weibull distribution works very well, while both single-modal and bi-modal Weibull distributions are inadequate for describing Nicalon fibres with varying diameters. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Sawyer, M. Jamieson, D. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.

    Google Scholar 

  2. H. E. Kim and A. J. Moorhead, ibid. 74 (1991) 666.

    Google Scholar 

  3. L. C. Sawyer, R. Arson, F. Haimbach, M. Jaffe and K. D. Rappaport, Ceram. Engng Sci. Proc. 6 (1985) 567.

    Google Scholar 

  4. M. Huger, S. Souchard and C. Gault, J. Mater. Sci. Lett. 12 (1993) 414.

    Google Scholar 

  5. B. Catoire, M. Sotton, G. Simon and A. R. Bunsell, Polymer 27 (1987) 751.

    Google Scholar 

  6. P.S. Wang, S. M. Hsu and T. N. Wittberg, J. Mater. Sci. 26 (1987) 1655.

    Google Scholar 

  7. K. L. Luthra, J. Amer. Ceram. Soc. 74 (1991) 1095.

    Google Scholar 

  8. S. C. Bennett and D. J. Johnson, J. Mater. Sci. 18 (1983) 3337.

    Google Scholar 

  9. A. Kelly, “Strong solids” (Clarendon Press, Oxford, 1973) p. 254.

    Google Scholar 

  10. S. B. Batdorf, in “Concise Encyclopedia of Composite Materials”, revised edition, edited by A. Kelly (Elsevier Science Ltd., Oxford, UK, 1994) p. 277.

    Google Scholar 

  11. R. L. Mehan and J. A. Herzog, in “Whisker technology”, edited by A. P. Levitt (Wiley-Interscience, New York, 1970) p. 157.

    Google Scholar 

  12. A. S. Fareed, P. Fang, M. J. Koczak and F. M. Ko, Amer. Ceram. Soc. Bull. 66 (1987) 253.

    Google Scholar 

  13. R. W. Rice, in “Fractography of ceramic & metal failures”, ASTM STP 827, edited by J. J. Mecholsky, Jr., and S. R. Powell Jr (ASTM, Philadelphia, PA, 1982) p. 5.

    Google Scholar 

  14. G. D. Soraru, M. Mercadini and R. D. Maschio, J. Amer. Ceram. Soc. 76 (1993) 2595.

    Google Scholar 

  15. Y. T. Zhu, W. R. Blumenthal, S. T. Taylor, T. C. Lowe and B. L. Zhou, J. Amer. Ceram. Soc. 80 (1997) 1447.

    Google Scholar 

  16. J. Lipowitz, Amer. Ceram. Soc. Bull. 70 (1991) 1888.

    Google Scholar 

  17. C.-H. Andersson and R. Warren, Composites 15 (1984) 16.

    Google Scholar 

  18. W. Weibull, J. Appl. Mech. 18 (1951) 293.

    Google Scholar 

  19. A. G. Evans, in “Fracture mechanics of ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 31.

    Google Scholar 

  20. S. B. Batdorf, in “Fracture mechanics of ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 1.

    Google Scholar 

  21. K. K. Phani, J. Mater. Sci. 23 (1988) 2424.

    Google Scholar 

  22. Y. T. Zhu, B. L. Zhou, G. H. He and Z. G. Zheng, J. Comp. Mater. 23 (1989) 280.

    Google Scholar 

  23. Y. T. Zhu and G. Zong, ibid. 27 (1993) 944.

    Google Scholar 

  24. J. B. Jones, J. B. Barr and R. E. Smith, J. Mater. Sci. 15 (1980) 2455.

    Google Scholar 

  25. ASTM standard D3379-75 (Reapproved 1989).

  26. A. S. Watson and R. L. Smith, J. Mater. Sci. 20 (1985) 3260.

    Google Scholar 

  27. C. H. Andersson and Warren, in “Advances in composite materials”, edited by A. R. Bunsell, C. Bathias, A. Martrenchjar, D. Menkes and G. Verchery (Pergamon Press, New York, 1980) p. 1129.

    Google Scholar 

  28. H. D. Wagner, J. Polym. Sci.: Part B: Polym. Phys. 27 (1989) 115.

    Google Scholar 

  29. Y. T. Zhu, W. R. Blumenthal and B. L. Zhou, in “Micromechanics of advanced materials”, edited by S. N. G. Chu, P. K. Liaw, R. J. Arsenault, K. Sadananda, K. S. Chen, W. W. Gerberich, C. C. Chau and T. M. Kung (TMS, Warrendale, PA, 1995) p. 493.

    Google Scholar 

  30. S. T. Taylor, Y. T. Zhu, W. R. Blumenthal, M. G. Stout, D. P. Butt and T. C. Lowe, J. Mater. Sci. 33 (1998) p. 1465.

    Google Scholar 

  31. S. Yajima, M. Omori, J. Hayashi, K. Okamura, T. Matsuzawa and C. Liaw, Chem. Lett. Chem. Soc. Japan 1976 (1976) 551.

    Google Scholar 

  32. R. S. Burington and D. C. May Jr, “Handbook of probability and statistics with tables”, 2nd edition (McGraw-Hill Book Company, New York, 1970) p. 109.

    Google Scholar 

  33. C. A. Johnson, in “Fracture mechanics of ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) p. 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.T., Taylor, S.T., Stout, M.G. et al. Characterization of Nicalon fibres with varying diameters: Part II Modified Weibull distribution. Journal of Materials Science 33, 1475–1480 (1998). https://doi.org/10.1023/A:1004395624953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004395624953

Keywords

Navigation