Skip to main content
Log in

Classical and Quantum Perturbation Theory for Two Non-Resonant Oscillators with Quartic Interaction

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We study the classical and quantum perturbation theory for two non-resonant oscillators coupled by a nonlinear quartic interaction. In particular, we analyze the question of quantum corrections to the torus quantization of the classical perturbation theory (semiclassical mechanics). We obtain up to the second order of perturbation theory an explicit analytical formula for the quantum energy levels, which is the semiclassical one plus quantum corrections. We compare the ‘exact’ quantum levels obtained numerically to the semiclassical levels studying also the effects of quantum corrections.

Sommario. Si studia la teoria perturbativa classica e quantistica per due oscillatori non risonanti accoppiati tramite una interazione non lineare quartica. In particolare si analizza il problema delle correzioni quantistiche alla quantizzazione dei tori della teoria perturbativa classica (meccanica semiclassica). Si ottiene, al secondo ordine della teoria perturbativa, una formula analitica per i livelli energetici, che è quella semiclassica con l'aggiunta di correzioni quantistiche. Si confrontano i livelli energetici ‘esatti’ ottenuti numericamente con quelli semiclassici, studiando anche gli effetti delle correzioni quantistiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozorio de Almeida, A.M., Hamiltonian Systems: Chaos and Quantization, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  2. Gutzwiller, M.C., Chaos in Classical and Quantum Mechanics, Springer, New York, 1990.

    Google Scholar 

  3. Casati, G. and Chirikov, B., Quantum Chaos, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  4. Maslov V.P. and Fredoriuk, M.V., Semiclassical Approximation in Quantum Mechanics, Reidel Publishing Company, London, 1981.

    Google Scholar 

  5. Rau, A.R.P., ‘The asymmetric rotor as a model for localization’. Rev. Mod. Phys., 64(1992) 623.

    Google Scholar 

  6. Braun, P.A., ‘Discrete semiclassical methods in the theory of Rydberg atoms in external fields’. Rev. Mod. Phys., 65(1993) 115.

    Google Scholar 

  7. Einstein, A., ‘Zum Quantensatz von Sommerfeld und Epstein’. Verhandlungen der Deutschen Physikalischen Gefsellschaft 19(1917) 82.

    Google Scholar 

  8. Maslov, V.P., Theorie des Perturbations et Methodes Asymptotiques, Dunod, Paris, 1972.

    Google Scholar 

  9. Graffi, S. and Paul, T., ‘The Schrödinger equation and canonical perturbation theory’. Comm. Math. Phys. 107(1987) 25.

    Google Scholar 

  10. Degli Esposti, M., Graffi, S. and Herczynski, J., ‘Exact quantization of the Lie algorithm in the Bargmann representation’. Ann. Phys.(N.Y.) 209(1991) 364.

    Google Scholar 

  11. Alvarez, G., Graffi S. and Silverstone, H.J., ‘Transition from classical to quantum mechanics: x 4perturbed harmonic oscillator’. Phys. Rev. A38(1988) 1687.

    Google Scholar 

  12. Ali, M.K. and Wood, W.R., ‘The Birkhoff–Gustavson normal form of one-dimensional double well Hamiltonians’. J. Math. Phys. 30(1989) 1238.

    Google Scholar 

  13. Ali, M.K., Wood, W.R. and Devitt, S.J., ‘On the summation of the Birkhoff–Gustavson normal form on an anharmonic oscillator’. J. Math. Phys. 27(1986) 1806.

    Google Scholar 

  14. Voros, A., ‘The return of the quartic oscillator. The complex WKB method’. Ann. Inst. H. Poincarè A39(1983) 211.

    Google Scholar 

  15. Robnik, M., ‘Aspects of quantum chaos in generic systems’. to appear in Proceedings of the Conference “Nonlinear Phenomena in Complex Systems”, Minsk, Belarus, 10–14 February, 1996.

  16. Pullen, R.A. and Edmonds, R.A., ‘Comparison of classical and quantal spectra for a totally bound potential’. J. Phys. A14(1981) L477.

    Google Scholar 

  17. Salasnich, L., ‘Chaos suppression in the SU(2) Yang–Mills–Higgs system’. Phys. Rev. D52(1995) 6189.

    Google Scholar 

  18. Salasnich, L., ‘Chaos and quantum chaos in a Yang–Mills–Higgs System’. Mod. Phys. Lett. A12(1997) 1473.

    Google Scholar 

  19. Dittrich, W. and Reuter, M., Classical and Quantum Dynamics, Springer, New York, 1992.

    Google Scholar 

  20. Sanders, J.A. and Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer, Yew mYork, 1985.

    Google Scholar 

  21. M. Robnik, ‘On the Padè approximations to the Birkhoff–Gustavson normal form’. J. Phys. A26(1993) 7427.

    Google Scholar 

  22. Messiah, A., Mecanique Quantique, Dunod, Paris, 1962.

    Google Scholar 

  23. Graffi, S., Manfredi, V.R. and Salasnich, L., ‘Accuracy of the semiclassical approximation: The Pullen–Edmonds Hamiltonian’. Nuovo Cim. B109(1994) 1147.

    Google Scholar 

  24. Robnik, M. and Salasnich, L., ‘WKB to all orders and the accuracy of the semiclassical approximation’. J. Phys. A30(1997) 1711.

    Google Scholar 

  25. Robnik, M. and Salasnich, L., ‘WKB expansion for the angular momentum and the Kepler problem: From the Torus quantization to the exact one’. J. Phys. A30(1997) 1719.

    Google Scholar 

  26. Salasnich, L. and Sattin, F., ‘SWKB for the angular momentum’. Mod. Phy. Lett. B11(1997) 801.

    Google Scholar 

  27. Salasnich, L. and Sattin, F., ‘On the convergence of the WKB series for the angular momentum operator’. J. Phys. A30(1997) 7597.

    Google Scholar 

  28. Bender, C. and Orzag, S., Advanced Mathematical Methods for Scientists and Engeneers, Mc Graw Hill, New York, 1978.

    Google Scholar 

  29. Graffi, S., Grecchi, V. and Simon, B., ‘Borel summability: application to the anharmonic oscillator’. Phys. Lett. B32(1970) 631.

    Google Scholar 

  30. Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Academic Press, New York, 1978.

    Google Scholar 

  31. Graffi, S., ‘Exact quantization of canonical perturbation theory’. In: Guerra, F., Loffredo, M.I. and Marchioro, C. (eds), Probabilistic Methods in Mathematical Physics, World Scientific, Singapore, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salasnich, L. Classical and Quantum Perturbation Theory for Two Non-Resonant Oscillators with Quartic Interaction. Meccanica 33, 397–405 (1998). https://doi.org/10.1023/A:1004377818528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004377818528

Navigation