Skip to main content
Log in

Quantitative Flow Visualization

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Modern developments in laser and computer technology, electronic cameras, and digital image processing techniques allow to generate planar distributions of quantitative data in turbulent flows. Large amounts of data can be processed easily and analyzed statistically. With these tools, it is possible to quantitatively visualize turbulent coherent structures, even in flows of high Reynolds number, and measure characteristic spatial quantities like vorticity, length scales, spatial correlation functions, etc. These potentials in analyzing spatial characteristics of turbulent flows are demonstrated with two different methods of quantitative flow visualization: speckle photography as a representative of the line-of-sight methods, and particle image velocimetry belonging to the methods that rely on the scattering of laser light from tracer particles.

Sommario.I moderni sviluppi nelle tecnologie del laser e dei computers, delle telecamere elettroniche e le tecniche di analisi digitale delle immagini permettono di ottenere distribuzioni quantitative, in un piano, di dati relativi a flussi turbolenti. Una gran quantità di dati può essere con facilità analizzata statisticamente. Con questi mezzi è possibile visualizzare quantitativamente strutture coerenti turbolente anche in flussi da alto numero di Reynolds, e misurare caratteristiche spaziali, come vorticità scale e funzioni di correlazione. Questa potenzialità di studiare caratteristiche spaziali di flussi turbolenti viene qui mostrata per due differenti metodi di visualizzazione quantitativa: fotografia ‘speckle’ e PIV (particle image velocimetry).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, C., ‘Recalling the 5th Volta congress’, Annu. Rev. Fluid Mech. 28 (1996) 1–9.

    Google Scholar 

  2. Convegno di Scienze Fisiche, Matematiche e Naturali, 30 Sett.-6 Ott. 1935-XIII, Tema: Le Alte Velocità in Aviazione, Seconda Edizione, Reale Accademia d'Italia, Roma, 1940.

  3. Merzkirch, W., Flow Visualization, 2nd ed., Academic Press, Orlando, 1987.

    Google Scholar 

  4. Yang, W.-J. (ed.), Handbook of Flow Visualization, Hemisphere, Washington, 1989.

    Google Scholar 

  5. Van Dyke, M., An Album of Fluid Motion, Parabolic Press, Stanford, 1982.

    Google Scholar 

  6. Japan Society of Mechanical Engineers (eds), Visualized Flow, Pergamon Press, Oxford, 1988.

    Google Scholar 

  7. Merzkirch, W., ‘Density-sensitive whole-field flow measurement by optical speckle photography’, Exp. Thermal Fluid Sci. 10 (1995) 435–443.

    Google Scholar 

  8. Kihm, K.D., ‘Laser speckle photography technique applied for heat and mass transfer problems’, Advances in Heat Transfer 30 (1997) 255–311.

    Google Scholar 

  9. Fomin, N., Speckle Photography for Fluid Mechanical Measurements, Springer-Verlag, Berlin, Heidelberg, 1998.

    Google Scholar 

  10. Wernekinck, U., Merzkirch W. and Fomin, N.A., ‘Measurement of light deflection in a turbulent density field’, Exp. Fluids 3 (1985) 206–208.

    Google Scholar 

  11. Uberoi, M.S. and Kovasznay, L.S.G., ‘Analysis of turbulent density fluctuations by the shadow method’, J. Appl. Phys. 26 (1955) 19–24.

    Google Scholar 

  12. Erbeck, R. and Merzkirch, W., ‘Speckle photographic measurement of turbulence in an air stream with fluctuating temperature’, Exp. Fluids 6 (1988) 89–93.

    Google Scholar 

  13. Han, Q.D., Theorie und numerische Simulation der speckle-optischen Untersuchung eines anisotropturbulenten Dichtefeldes, Dissertation, Universität Essen, 1993.

  14. Vitkin, D., Merzkirch, W. and Fomin, N., ‘Quantitative visualization of the change of turbulence structure caused by a normal shock wave’, J. Visual. 1 (1998) 29–35.

    Google Scholar 

  15. Fomin, N., Merzkirch, W., Vitkin, D. and Wintrich, H., ‘Visualization of turbulence anisotropy by single exposure speckle photography’, Exp. Fluids 20 (1996) 476–479.

    Google Scholar 

  16. Lee, S., Lele, S.K. and Moin, P., ‘Direct numerical simulation of isotropic turbulence interacting with a weak shock wave’, J. Fluid Mech. 251 (1993) 533–562.

    Google Scholar 

  17. Adrian, R.J., ‘Particle-imaging techniques for experimental fluid mechanics’, Annu. Rev. Fluid Mech. 23 (1991) 261–304.

    Google Scholar 

  18. Hinsch, K.D., ‘Particle image velocimetry’, In: Sirohi R.S. (ed) Speckle Metrology, Marcel Dekker, New York, 1993, pp. 235–323.

    Google Scholar 

  19. Grant, I., ‘Particle image velocimetry: a review’, Proc. Instn. Mech. Engrs. 211 C (1997) 55–76.

    Google Scholar 

  20. Raffel, M., Willert, C. and Kompenhans, J., ‘Particle Image Velocimetry. A Practical Guide’, Springer-Verlag, Berlin, Heidelberg, 1998.

    Google Scholar 

  21. Schlüter, T. and Merzkirch, W., ‘PIV measurements of the time-averaged flow velocity downstream of flow conditioners in a pipeline’, Flow Meas. Instrum. 7 (1996) 173–179.

    Google Scholar 

  22. Gersten, K. and Herwig, H., Strömungsmechanik. Grundlagen der Impuls-, Wärme-und Stoffübertragung aus asymptotischer Sicht, Vieweg, Braunschweig, 1992.

    Google Scholar 

  23. Schneider, F., Xiong, W. and Merzkirch, W., ‘Visualization and measurement of coherent structures in high Reynolds number pipe flow’, In: Proceedings 8th International Symposium on Flow Visualization, Sorrento, 1998.

  24. Abrahamson, S. and Lonnes, S., ‘Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approaches’, Exp. Fluids 20 (1995) 10–20.

    Google Scholar 

  25. Westerweel, J., Draad, A.A., von der Hoeven, J.G.T. and van Oord, J., ‘Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry’, Exp. Fluids 20 (1996) 165–177.

    Google Scholar 

  26. Lawn, C., ‘The determination of the rate of dissipation in turbulent pipe flow’, J. Fluid Mech. 48(3) (1971) 477–505.

    Google Scholar 

  27. Liepmann, H.W., ‘The rise and fall of ideas in turbulence’, American Scientist 67 (1979) 221–228.

    Google Scholar 

  28. Merzkirch, W., ‘Mach's contribution to the development of gas dynamics’, In: R.S. Cohen and R.J. Seeger, (eds) Ernst Mach-Physicist and philosopher, Vol. VI of Boston Studies in the Philosophy of Science, Reidel, Dordrecht-Holland, 1969, pp. 42–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzkirch, W., Vitkin, D. & Xiong, W. Quantitative Flow Visualization. Meccanica 33, 503–516 (1998). https://doi.org/10.1023/A:1004372627123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004372627123

Navigation