Skip to main content
Log in

Hamilton's Principle and Rankine–Hugoniot Conditions for General Motions of Mixtures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In previous papers [1, 2], we presented hyperbolic governing equations and jump conditions for barotropic fluid mixtures. Now we extend our results to the most general case of two‐component media. We obtain governing equations for each component. This is not a system of conservation laws. Nevertheless, using Hamilton's principle we are able to obtain a complete set of Rankine–Hugoniot conditions. For the two‐fluid case, the jump relations do not involve the conservation of the total momentum and the total energy.Sommario. In precedenti lavori [1, 2] sono state dedotte equazioni di governo iperboliche e condizioni di salto per miscele fluide barotropiche. I risultati sono estesi al caso più generale di mezzi a due componenti, ottenendo le equazioni di governo per ciascun componente. Questo sistema non è derivabile dalle leggi di conservazione. Nondimeno, usando il principio di Hamilton è possibile ottenere un insieme completo di condizioni di Rankine–Hugoniot. Nel caso dei due fluidi, le condizioni di salto non coinvolgono la conservazione del momento e dell'energia totali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavrilyuk, S.L., Gouin, H. and Perepechko, Yu. V., 'A variational principle for two-fluid models', C. R. Acad. Sci. Paris, Série II 324 (1997) 483–490.

    Google Scholar 

  2. Gavrilyuk, S.L., Gouin, H. and Perepechko, Yu. V., 'Hyperbolic models of homogeneous two-fluid mixtures', Meccanica 33 (1998) 161–175.

    Google Scholar 

  3. Serrin, J., 'Mathematical principles of classical fluid mechanics', In: Encyclopedia of Physics, VIII/1, Springer-Verlag, 1959, pp. 125–263.

    Google Scholar 

  4. Berdichevsky, V.L., Variational Principles of Continuum Mechanics, Nauka, Moscow, 1983.

    Google Scholar 

  5. Geurst, J.A., 'Virtual mass in two-phase bubbly flow', Physica A 129 (1985) 233–261.

    Google Scholar 

  6. Geurst, J.A., 'Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures', Physica A 135 (1986) 455–486.

    Google Scholar 

  7. Gouin, H., Contribution à une Étude Géométrique et Variationnelle des Milieux Continus, Thèse d'Etat, Université de Provence, France, 1978.

    Google Scholar 

  8. Gouin, H., 'Lagrangian representation and invariance properties of perfect fluid flows', In: Non Linear Problems of Analysis in Geometry and Mechanics, Research Notes in Mathematics, Pitman 46, 1981, pp. 128–139.

  9. Serre, D., 'Sur le principe variationnel des ´equations de la m´ecanique des fluides parfaits', Math. Model. Num. Anal. 27(6) (1993) 739–758.

    Google Scholar 

  10. Gouin, H., 'Thermodynamic form of the equation of motion for perfect fluids of grad n', C. R. Acad. Sci. Paris II 305 (1987) 833-838.

    Google Scholar 

  11. Stewart, H.B. and Wendroff, B., 'Two-phase flow: models and methods', J. Comput. Phys. 56 (1984) 363–409.

    Google Scholar 

  12. Prosperetti, A. and Satrape, J.V., 'Stability of two-phase flow models', In: D.D. Joseph and D.G. Schaeffer, (eds), Two-Phase Flows and Waves, Springer-Verlag, 1990, pp. 98–117.

  13. Gouin, H., 'Variational theory of mixtures in continuum mechanics', Eur. J. Mech, B/Fluids 9 (1990) 469–491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouin, H., Gavrilyuk, S. Hamilton's Principle and Rankine–Hugoniot Conditions for General Motions of Mixtures. Meccanica 34, 39–47 (1999). https://doi.org/10.1023/A:1004370127958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004370127958

Navigation