Skip to main content
Log in

On a Stabilization Procedure for the Parabolic Stability Equations

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The numerical-stability consequences of the remaining ellipticity in the Parabolic Stability Equations (PSE) are studied. The analysis of Li and Malik of the constant-coefficient Navier-Stokes equations is extended by a detailed analysis of the parabolizing steps. Dropping of the highest streamwise derivative removes the slowest decaying upstream propagating mode, whereas the fastest remains. This mode can be numerically damped, by use of an implicit discretization of the streamwise derivative and a large enough streamwise step size. Suggestions of how to make the equations well-posed by the addition of a term proportional to the truncation error of the implicit scheme are given. This term is easy to implement, does not change the order of approximation and removes the step-size restriction. An explicit formula for the critical step size is also derived, in the modified equations, which shows that the equations are completely stabilized for a properly chosen stabilization parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gaster, On the effects of boundary-layer growth on flow stability. J. Fluid Mech.66 (1974) 465-480.

    Google Scholar 

  2. W. S. Saric and A. H. Nayfeh, Non-parallel stability of boundary-layer flows. Phys. Fluids18 (1975) 945-950.

    Google Scholar 

  3. S. A. Gaponov, The influence of flow non-parallelism on disturbance development in the supersonic boundary layers. In: Proc. 8th Canadian Congr. of Appl. Mech. (1981) pp. 673-674.

  4. N. M. El-Hady, Nonparallel instability of supersonic and hypersonic boundary layers. Phys. Fluids A3 (1991) 2164-2178.

    Google Scholar 

  5. P. Hall, The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130 (1983) 41-58.

    Google Scholar 

  6. N. Itoh, The origin and subsequent development in space of Tollmien-Schlichting waves in a boundary layer. Fluid Dyn. Res.1 (1986) 119-130.

    Google Scholar 

  7. Th. Herbert and F. P. Bertolotti, Stability analysis of nonparallel boundary layers. Bull. Am. Phys. Soc. 32 (1987) 2079.

  8. Th. Herbert, Boundary-layer transition - analysis and prediction revisited. AIAAPaper 91-0737 (1991).

  9. F. P. Bertolotti, Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties.Ph.D. Thesis. The Ohio State University (1991) 189 pp.

  10. F. P. Bertolotti, Th. Herbert and S. P. Spalart, Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242 (1992) 441-474.

    Google Scholar 

  11. M. Simen, Local and nonlocal stability theory of spatially varying flows. In: M. Y. Hussaini, A. Kumar and C. L. Streett (eds), Instability, Transition and Turbulence, New York: Springer-Verlag (1992) pp. 181-201.

    Google Scholar 

  12. M. Simen, Lokale und nichtlokale Instabilität hypersonischer Grenzschichtströmungen.Ph.D. Thesis. DLR FB 93–31 (1993) 200 pp.

  13. S. G. Rubin, A Review of marching procedures for parabolized Navier-Stokes equations. In: T. Cebeci (ed.), Proc. Symp. Num. and Phys. Aspects Aerodyn. Flows. New York: Springer-Verlag (1981) pp. 171-186.

    Google Scholar 

  14. S. G. Rubin and J. C. Tannehill, Parabolized/reduced Navier-Stokes computational techniques. Ann. Rev. Fluid Mech.24 (1992) 117-144.

    Google Scholar 

  15. D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. New York: Hemisphere (1984) 599 pp.

    Google Scholar 

  16. S. C. Lubard and W. S. Helliwell, Calculation of the flow on a cone at high angle of attack. AIAA J. 12 (1974) 965-974.

    Google Scholar 

  17. Y. C. Vigneron, J. V. Rakish and J. C. Tannehill, Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges. AIAAPaper 78–1137 (1978).

  18. Y. C. Vigneron, J. V. Rakish and J. C. Tannehill, Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges. NASA TM-78500 (1978).

  19. T. C. Lin and S. G. Rubin, A numerical model for supersonic viscous flow over a slender reentry vehicle. AIAAPaper 79–0205 (1979).

  20. S. G. Rubin and A. Lin, Marching with the parabolized Navier-Stokes equations. Isr. J. Technol. 18 (1980) 21-31.

    Google Scholar 

  21. M. Israeli and A. Lin, Iterative numerical solutions and boundary conditions for the parabolized Navier-Stokes equations. Comput. Fluids13 (1985) 397-409.

    Google Scholar 

  22. H. Haj-Hariri, Characteristics analysis of the parabolized stability equations. Stud. Appl. Math. 92 (1994) 41-53.

    Google Scholar 

  23. F. Li and M. R. Malik, Mathematical nature of parabolized stability equations. In: R. Kobayashi (ed.), Laminar-Turbulent Transition. Proc. 4th IUTAM Symposium Sendai/Japan 1994. Berlin: Springer-Verlag (1995) pp. 205-212.

    Google Scholar 

  24. F. Li and M. R. Malik, On the nature of PSE approximation. Theor. Comp. Fluid Dyn.8 (1996) 253-273.

    Google Scholar 

  25. H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations. New-York: Academic Press (1989) 402 pp.

    Google Scholar 

  26. A. Nayfeh, Perturbation Methods. New-York: John Wiley & Sons (1973) 425 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, P., Henningson, D. & Hanifi, A. On a Stabilization Procedure for the Parabolic Stability Equations. Journal of Engineering Mathematics 33, 311–332 (1998). https://doi.org/10.1023/A:1004367704897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004367704897

Navigation