Skip to main content
Log in

Fracture characteristic of a (Si–Al–O–N)–SiC composite studied by transmission electron microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and fracture characteristic of a pressureless-sintered (Si–Al–O–N)–6 wt% SiC composite have been investigated by a combination of transmission electron microscopy and microindentation fracture technique. SiC particles of nanometre size were dispersed in Si–Al–O–N grains and, at grain boundaries, were associated with strong strain fields. Si–Al–O–N grain boundaries were formed with an amorphous layer about 2 nm thick. However, interfaces between Si–Al–O–N and SiC embedded in the Si–Al–O–N grains were directly joined without any amorphous layer. The main fracture mode was an intergranular type, but some transgranular fracture by the dispersion of nanometre-sized SiC in the Si–Al–O–N grains are also observed at the crack wake zone. The fracture toughening mechanisms of crack deflection, bridging and microcracking were not observed in the (Si–Al–O–N)–6 wt% SiC nanocomposite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tsuge, K. Nishida and M. Komatsu, J. Amer. Ceram. Soc. 58 (1975) 323.

    Google Scholar 

  2. F. F. Lange, ibid. 62 (1979) 428.

    Google Scholar 

  3. A. G. Evans, ibid. 73 (1990) 187.

    Google Scholar 

  4. K. Niihara, K. Suganuma, A. Nakahira and K. Izaki, J. Mater. Sci. Lett. 9 (1990) 598.

    Google Scholar 

  5. A. Sawaguchi, K. Toda and K. Niihara, J. Amer. Ceram. Soc. 74 (1991) 1142.

    Google Scholar 

  6. I. B. Cutler, P. D. Miller, W. Rafaniello and H. K. Park, Nature 275 (1978) 443.

    Google Scholar 

  7. W. Rafaniello, K. Cho and A. Virkar, J. Mater. Sci. 6 (1981) 3479.

    Google Scholar 

  8. K. Kobayashi, S. Umebayashi and K. Kishi, ibid. 89 (1981) 550.

    Google Scholar 

  9. S. Umebayashi, K. Kishi, E. Tani and K. Kobayashi, ibid. 92 (1984) 35.

    Google Scholar 

  10. H. Nakamur, S. Umebayashi and K. Kishi, J. Ceram. Soc. Jpn. 98 (1990) 243.

    Google Scholar 

  11. K. Kishi, S. Umebayashi, E. Tani, K. Kobayashi and H. Nakamura, Yogyo Kyokai Shi 95 (1987) 450.

    Google Scholar 

  12. C. Yamagishi, J. Hakoshima, K. Tsukamoto and Y. Akiyama, J. Jpn. Soc. Powder Powder Metall. 37 (1990) 1056.

    Google Scholar 

  13. C. Yamagishi, K. Tsukamoto, J. Hakoshima, H. Shimojima and Y. Akiyama, J. Mater. Sci. 27 (1992) 1909.

    Google Scholar 

  14. B. T. Lee, T. Koyama, A. Nishiyama and K. Hiraga, Scripta Metall. Mater. 32 (1995) 1073.

    Google Scholar 

  15. B. T. Lee and K. Hiraga, Mater. Trans. Jpn. Inst. Metals 34 (1993) 930.

    Google Scholar 

  16. B. T. Lee, G. Pezzotti and K. Hiraga, Mater. Sci. Engng A177 (1994) 151.

    Google Scholar 

  17. B. T. Lee, S. Hayashi, T. Hirai and K. Hiraga, Mater. Trans. Jpn. Inst. Metals 34 (1993) 573.

    Google Scholar 

  18. B. T. Lee and H. D. Kim, J. Kor. Ceram. Soc. 33 (1996) 686.

    Google Scholar 

  19. B. T. Lee and K. Hiraga, J. Mater. Res. 9 (1994) 1199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BT. Fracture characteristic of a (Si–Al–O–N)–SiC composite studied by transmission electron microscopy. Journal of Materials Science 33, 313–318 (1998). https://doi.org/10.1023/A:1004355310048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004355310048

Keywords

Navigation